Bammel, S. E. 和 Rothstein, J. "The Number of Latin Squares." Disc. Math.11, 93-95, 1975.Cayley, A. "On Latin Squares." Oxford Cambridge Dublin Messenger Math.19, 135-137, 1890.Colbourn, C. J. 和 Dinitz, J. H. (Eds.). CRC 组合设计手册。 Boca Raton, FL: CRC Press, 1996.Comtet, L. 高级组合学:有限与无限展开的艺术,修订和扩充版。 Dordrecht, Netherlands: Reidel, p. 183, 1974.Euler, L. "Recherches sur une nouvelle esp ece de quarrès magiques." Verh. Zeeuwsch Gennot. Weten Vliss9, 85-239, 1782.Frolov, M. "Sur les permutations carrés." J. de Math. spéc.4, 8-11 和 25-30, 1890.Gessel, I. "Counting Latin Rectangles." Bull. Amer. Math. Soc.16, 79-83, 1987.Hunter, J. A. H. 和 Madachy, J. S. 数学消遣。 New York: Dover, pp. 33-34, 1975.Kraitchik, M. "Latin Squares." §7.11 in 数学娱乐。 New York: W. W. Norton, p. 178, 1942.Lindner, C. C. 和 Rodger, C. A. 设计理论。 Boca Raton, FL: CRC Press, 1997.MacMahon, P. A. 组合分析,第 1 卷。 London: Cambridge University Press, 1915.McKay, B. D. 和 Rogoyski, E. "Latin Squares of Order 10." Electronic J. Combinatorics2, No. 1, R3, 1-4, 1995. http://www.combinatorics.org/Volume_2/Abstracts/v2i1r3.html.McKay, B. D. 和 Wanless, I. M. "On the Number of Latin Squares." Ann. Combin.9, 335-344, 2005.McKay, B. D. "Latin Squares." http://users.cecs.anu.edu.au/~bdm/data/latin.html.Nechvatal, J. R. "Asymptotic Enumeration of Generalised Latin Rectangles." Util. Math.20, 273-292, 1981.Norton, H. W. "The Squares." Ann. Eugenics9, 269-307, 1939.Rohl, J. S. 通过 Pascal 递归。 Cambridge, England: Cambridge University Press, pp. 162-165, 1984.Ryser, H. J. "Latin Rectangles." §3.3 in 组合数学。 Buffalo, NY: Math. Assoc. Amer., pp. 35-37, 1963.Sade, A. "Enumération des carrés latins. Application au 7ème ordre. Conjectures pour les ordres supérieurs." 8 pp. Marseille, France: Privately published, 1948.Saxena, P. N. "A Simplified Method of Enumerating Latin Squares by MacMahon's Differential Operators; II. The Latin Squares." J. Indian Soc. Agricultural Statist.3, 24-79, 1951.Shao, J.-Y. 和 Wei, W.-D. "A Formula for the Number of Latin Squares." Disc. Math.110, 293-296, 1992.Sloane, N. J. A. 序列 A000479, A002860/M2051, A000315/M3690, A040082, 和 A072377 在 "整数序列在线百科全书" 中。Tarry, G. "Le problème de 36 officiers." Compte Rendu de l'Assoc. Français Avanc. Sci. Naturel1, 122-123, 1900.Tarry, G. "Le problème de 36 officiers." Compte Rendu de l'Assoc. Français Avanc. Sci. Naturel2, 170-203, 1901.Wells, M. B. "The Number of Latin Squares of Order Eight." J. Combin. Th.3, 98-99, 1967.