Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. "Integer Relation Detection." §2.2 in 实验数学实践。 Wellesley, MA: A K Peters, pp. 29-31, 2006.Bailey, D. H. and Broadhurst, D. J. "Parallel Integer Relation Detection: Techniques and Applications." Math. Comput.70, 1719-1736, 2001.Bailey, D. H. and Ferguson, H. R. P. "Numerical Results on Relations Between Numerical Constants Using a New Algorithm." Math. Comput.53, 649-656, 1989.Bailey, D. and Plouffe, S. "Recognizing Numerical Constants." 有机数学。1995 年 12 月 12 日至 14 日在不列颠哥伦比亚省伯纳比举行的研讨会论文集 (Ed. J. Borwein, P. Borwein, L. Jörgenson, and R. Corless). Providence, RI: Amer. Math. Soc., pp. 73-88, 1997. http://www.cecm.sfu.ca/organics/papers/bailey/.Bernstein, L. Jacobi-Perron 算法:理论与应用。 Berlin: Springer-Verlag, 1971.Borwein, J. and Bailey, D. 实验数学:21 世纪的合理推理。 Wellesley, MA: A K Peters, pp. 51-52, 2003.Borwein, J. M. and Corless, R. M. "Emerging Tools for Experimental Mathematics." Amer. Math. Monthly106, 899-909, 1999.Borwein, J. M. and Lisonek, P. "Applications of Integer Relation Algorithms." Disc. Math.217, 65-82, 2000.Brentjes, A. J. "Multi-Dimensional Continued Fraction Algorithms." Mathemat. Centre Tracts, No. 145. Amsterdam, Netherlands: Mathemat. Centrum, 1981.Brun, V. "En generalisatiken av kjedeboøken, I." Norske Vidensk. Skrifter I. Matemat. Naturvid. Klasse6, 1-29, 1919.Brun, V. "En generalisatiken av kjedeboøken, II." Norske Vidensk. Skrifter I. Matemat. Naturvid. Klasse7, 1-24, 1920.Brun, V. "Algorithmes euclidiens pour trois et quatre nombres." In Treizième Congrès des mathématiciens Scandinaves, tenu a Helsinki 18-23 août 1957. Helsinki: Mercators Trycheri, pp. 46-64, 1958.Centre for Experimental & Constructive Mathematics. "Integer Relations." http://www.cecm.sfu.ca/projects/IntegerRelations/.Ferguson, H. R. P. and Bailey, D. H. "A Polynomial Time, Numerically Stable Integer Relation Algorithm." RNR Techn. Rept. RNR-91-032, Jul. 14, 1992.Ferguson, H. R. P.; Bailey, D. H.; and Arno, S. "Analysis of PSLQ, An Integer Relation Finding Algorithm." Math. Comput.68, 351-369, 1999.Ferguson, H. R. P. and Forcade, R. W. "Generalization of the Euclidean Algorithm for Real Numbers to All Dimensions Higher than Two." Bull. Amer. Math. Soc.1, 912-914, 1979.Forcade, R. W. "Brun's Algorithm." Unpublished manuscript, 1-27, Nov. 1981.Hastad, J.; Just, B.; Lagarias, J. C.; and Schnorr, C. P. "Polynomial Time Algorithms for Finding Integer Relations Among Real Numbers." SIAM J. Comput.18, 859-881, 1988.Hermite, C. "Extraits de lettres de M. Ch. Hermite à M. Jacobi sur differénts objets de la théorie de nombres." J. reine angew. Math.3/4, 261-315, 1850.Jacobi, C. G. "Allgemeine Theorie der Kettenbruchahnlichen Algorithmen, in welche jede Zahl aus Drei vorhergehenden gebildet wird (Aus den hinterlassenen Papieren von C. G. Jacobi mitgetheilt durch Herrn E. Heine." J. reine angew. Math.69, 29-64, 1868.Lagarias, J. C. and Odlyzko, A. M. "Solving Low-Density Subset Sum Problems." J. ACM32, 229-246, 1985.Lenstra A. K.; Lenstra, H. W. Jr.; and Lovász, L. "Factoring Polynomials with Rational Coefficients." Math. Ann.261, 515-534, 1982.Perron, O. "Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus." Math. Ann.64, 1-76, 1907.Plouffe, S. "Plouffe's Inverter." http://pi.lacim.uqam.ca/eng/.Poincaré, H. "Sur une généralisation des fractions continues." Comptes Rendus Acad. Sci. Paris99, 1014-1016, 1884.Szekeres, G. "Multidimensional Continued Fractions." Ann. Univ. Sci. Budapest Eőtvős Sect. Math.13, 113-140, 1970.