巴拿赫-塔斯基悖论首次于 1924 年提出,它指出可以将一个球分解成六块,然后通过刚性运动重新组装成两个与原球大小相同的球。罗宾逊 (Robinson) (1947) 随后将块数减少到五块,尽管这些块非常复杂。(五块是最少的,尽管如果忽略中心的一个点,四块就足够了。)该定理的一个推广是,在 中,任何两个不延伸到无穷远且各自包含任意大小球体的物体都可以互相分割(即,它们是等积可分的)。
巴拿赫-塔斯基悖论
另请参阅
球, 化圆为方, 分割, 等积可分的使用 Wolfram|Alpha 探索
参考文献
Banach, S. and Tarski, A. "Sur la décomposition des ensembles de points en parties respectivement congruentes." Fund. Math. 6, 244-277, 1924.Czyz, J. Paradoxes of Measures and Dimensions Originating in Felix Hausdorff's Ideas. Singapore: World Scientific, 1993.Erickson, G. W. and Fossa, J. A. Dictionary of Paradox. Lanham, MD: University Press of America, pp. 16-17, 1998.French, R. M. "The Banach-Tarski Theorem." Math. Intell. 10, No. 4, 21-28, 1988.Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, p. 48, 1984.Hertel, E. "On the Set-Theoretical Circle-Squaring Problem." http://www.minet.uni-jena.de/Math-Net/reports/sources/2000/00-06report.ps.Kirsch, A. "Das Paradoxon von Hausdorff, Banach und Tarski: Kann man es 'verstehen'?" Math. Semesterber. 37, 216-239, 1990.Robinson, R. M. "On the Decomposition of Spheres." Fund. Math. 34, 246-260, 1947.Sierpiński, W. "On the Congruence of Sets and their Equivalence by Finite Decomposition." In Congruence of Sets and Other Monographs. New York: Chelsea.Stromberg, K. "The Banach-Tarski Paradox." Amer. Math. Monthly 86, 3, 1979.Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, p. 103, 2004. http://www.mathematicaguidebooks.org/.Wagon, S. "A Hyperbolic Interpretation of the Banach-Tarski Paradox." Mathematica J. 3, 58-60, 1993.Wagon, S. The Banach-Tarski Paradox. New York: Cambridge University Press, 1993.在 Wolfram|Alpha 中被引用
巴拿赫-塔斯基悖论如此引用
Weisstein, Eric W. "巴拿赫-塔斯基悖论。" 来自 MathWorld——Wolfram 网络资源。 https://mathworld.net.cn/Banach-TarskiParadox.html