主题
Search

Costa 极小曲面


CostaMinimalSurface

Costa 曲面是一个完备极小 嵌入曲面,具有有限拓扑结构(即,它没有边界且不自相交)。它的亏格为 1,有三个穿孔(Schwalbe 和 Wagon 1999)。在 Costa (1984) 发现这个曲面之前,唯一已知的 R^3 中没有自相交的完备极小可嵌入曲面是平面(亏格 0)、悬链面(亏格 0,有两个穿孔)和螺旋面(亏格 0,有两个穿孔),并且人们曾推测这些是唯一的此类曲面。

令人惊讶的是,Costa 曲面属于 D_4 二面体对称群

Costa 极小曲面出现在 Osserman (1986;左图) 的封面上,以及 La Gaceta de la Real Sociedad Matemática Española 第 2 卷第 2 期 (1999;右图) 的封面上。

Snow sculpture of the Costa minimal surface

它也被制成雪雕 (Ferguson 等人 1999, Wagon 1999)。

Invisible Handshake sculpture by Helaman Ferguson

2008 年 2 月 20 日,Helaman Ferguson 的大型石雕安装在麦卡莱斯特学院奥林-赖斯科学中心的南侧平台(照片由 Stan Wagon 提供)。

正如 Gray (Ferguson 等人 1996, Gray 1997) 发现的那样,Costa 曲面可以用参数形式显式表示为

x=1/2R{-zeta(u+iv)+piu+(pi^2)/(4e_1)+pi/(2e_1)[zeta(u+iv-1/2)-zeta(u+iv-1/2i)]}
(1)
y=1/2R{-izeta(u+iv)+piv+(pi^2)/(4e_1)-pi/(2e_1)[izeta(u+iv-1/2)-izeta(u+iv-1/2i)]}
(2)
z=1/4sqrt(2pi)ln|(P(u+iv)-e_1)/(P(u+iv)+e_1)|,
(3)

其中 zeta(z)Weierstrass zeta 函数P(g_2,g_3;z)Weierstrass 椭圆函数,其中 (g_2,g_3)=(189.072772...,0) (OEIS A133747),不变量对应于半周期 1/2 和 i/2,第一个根为

 e_1=P(1/2;0,g_3)=P(1/2|1/2,1/2i) approx 6.87519
(4)

(OEIS A133748),其中 P(z;g_2,g_3)=P(z|omega_1,omega_2)Weierstrass 椭圆函数


另请参阅

完备极小曲面, 极小曲面, Weierstrass 椭圆函数, Weierstrass Zeta 函数

使用 Wolfram|Alpha 探索

参考文献

Borwein, J. 和 Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, pp. 86-87, 2003.Costa, A. "Examples of a Complete Minimal Immersion in R^3 of Genus One and Three Embedded Ends." Bil. Soc. Bras. Mat. 15, 47-54, 1984.do Carmo, M. P. Mathematical Models from the Collections of Universities and Museums (Ed. G. Fischer). Braunschweig, Germany: Vieweg, p. 43, 1986. Ferguson, H.; Gray, A.; 和 Markvorsen, S. "Costa's Minimal Surface via Mathematica." Mathematica in Educ. Res. 5, 5-10, 1996. http://library.wolfram.com/infocenter/Articles/2736/.Ferguson, H.; Ferguson, C.; Nemeth, T.; Schwalbe, D.; 和 Wagon, S. "Invisible Handshake." Math. Intell. 21, 30-35, 1999.GRAPE. "Costa's Surface (Celsoe Costa)." http://www-sfb256.iam.uni-bonn.de/grape/EXAMPLES/AMANDUS/costa.html.Gray, A. "Costa's Minimal Surface." §32.5 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 747-757, 1997.Hoffman, D. 和 Meeks, W. H. III. "A Complete Embedded Minimal Surfaces in R^3 with Genus One and Three Ends." J. Diff. Geom. 21, 109-127, 1985.Nordstrand, T. "Costa-Hoffman-Meeks Minimal Surface." http://jalape.no/math/costatxt.Osserman, R. A Survey of Minimal Surfaces. New York: Dover, pp. 149-150, 1986.Peterson, I. "Three Bites in a Doughnut: Computer-Generated Pictures Contribute to the Discovery of a New Minimal Surface." Sci. News 127, 161-176, 1985.Peterson, I. "The Song in the Stone: Developing the Art of Telecarving a Minimal Surface." Sci. News 149, 110-111, Feb. 17, 1996.Ramos Batista, V. "The Doubly Periodic Costa Surfaces." Math. Z. 240, 549-577, 2002.Ramos Batista, V. "A Family of Triply Periodic Costa Surfaces." Pacific J. Math. 212, 347-370, 2003.Ramos Batista, V. "Singly Periodic Costa Surfaces." J. London Math. Soc. 72, 478-496, 2005.Schwalbe, D. 和 Wagon, S. "The Costa Surface, in Show and Mathematica." Mathematica in Educ. Res. 8, 56-63, 1999.Sloane, N. J. A. Sequences A133747 and A133748 in "The On-Line Encyclopedia of Integer Sequences."Wagon, S. "Snow Sculpting with Mathematics." Jan 25, 1999. http://stanwagon.com/snow/breck1999.Wagon, S. "Invisible Handshake." http://stanwagon.com/wagon/Misc/invisiblehandshake.html.Wolfram Research, Inc. "3-D Zoetrope at SIGGRAPH 2000." http://www.wolfram.com/news/zoetrope.html.

请引用本文为

Weisstein, Eric W. "Costa 极小曲面。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/CostaMinimalSurface.html

主题分类