柯西积分公式指出
![f(z_0)=1/(2pii)∮_gamma(f(z)dz)/(z-z_0),](/images/equations/CauchyIntegralFormula/NumberedEquation1.svg) |
(1)
|
其中积分是沿围道积分,围道
包围点
。
它可以由考虑围道积分推导得出
![∮_gamma(f(z)dz)/(z-z_0),](/images/equations/CauchyIntegralFormula/NumberedEquation2.svg) |
(2)
|
定义路径
为围绕点
的无穷小逆时针圆,并定义路径
为具有切割线的任意环路(前向和反向贡献在切割线上相互抵消),以便绕过
。则总路径为
![gamma=gamma_0+gamma_r,](/images/equations/CauchyIntegralFormula/NumberedEquation3.svg) |
(3)
|
因此
![∮_gamma(f(z)dz)/(z-z_0)=∮_(gamma_0)(f(z)dz)/(z-z_0)+∮_(gamma_r)(f(z)dz)/(z-z_0).](/images/equations/CauchyIntegralFormula/NumberedEquation4.svg) |
(4)
|
根据柯西积分定理,沿任何不包围极点的路径的围道积分为 0。因此,上述方程中的第一项为 0,因为
不包围极点,我们剩下
![∮_gamma(f(z)dz)/(z-z_0)=∮_(gamma_r)(f(z)dz)/(z-z_0).](/images/equations/CauchyIntegralFormula/NumberedEquation5.svg) |
(5)
|
现在,令
,所以
。则
但是我们可以自由地让半径
缩小到 0,所以
给出 (1)。
如果绕点
进行多次循环,则方程 (11) 变为
![n(gamma,z_0)f(z_0)=1/(2pii)∮_gamma(f(z)dz)/(z-z_0),](/images/equations/CauchyIntegralFormula/NumberedEquation6.svg) |
(12)
|
其中
是围道卷绕数。
对于
的导数,也存在类似的公式:
再次迭代,
![f^('')(z_0)=2/(2pii)∮_gamma(f(z)dz)/((z-z_0)^3).](/images/equations/CauchyIntegralFormula/NumberedEquation7.svg) |
(18)
|
继续此过程并添加围道卷绕数
,
![n(gamma,z_0)f^((r))(z_0)=(r!)/(2pii)∮_gamma(f(z)dz)/((z-z_0)^(r+1)).](/images/equations/CauchyIntegralFormula/NumberedEquation8.svg) |
(19)
|
参见
辐角原理,
柯西积分定理,
复残数,
围道积分,
莫雷拉定理,
极点
使用 Wolfram|Alpha 探索
参考文献
Arfken, G. "Cauchy's Integral Formula." §6.4 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 371-376, 1985.Kaplan, W. "Cauchy's Integral Formula." §9.9 in Advanced Calculus, 4th ed. Reading, MA: Addison-Wesley, pp. 598-599, 1991.Knopp, K. "Cauchy's Integral Formulas." Ch. 5 in Theory of Functions Parts I and II, Two Volumes Bound as One, Part I. New York: Dover, pp. 61-66, 1996.Krantz, S. G. "The Cauchy Integral Theorem and Formula." §2.3 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 26-29, 1999.Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 367-372, 1953.Woods, F. S. "Cauchy's Theorem." §146 in Advanced Calculus: A Course Arranged with Special Reference to the Needs of Students of Applied Mathematics. Boston, MA: Ginn, pp. 352-353, 1926.在 Wolfram|Alpha 上被引用
柯西积分公式
引用为
Weisstein, Eric W. "柯西积分公式。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/CauchyIntegralFormula.html
学科分类