主题
Search

柯西积分公式


CauchysIntegralFormula

柯西积分公式指出

 f(z_0)=1/(2pii)∮_gamma(f(z)dz)/(z-z_0),
(1)

其中积分是沿围道积分围道 gamma 包围点 z_0

它可以由考虑围道积分推导得出

 ∮_gamma(f(z)dz)/(z-z_0),
(2)

定义路径 gamma_r 为围绕点 z_0 的无穷小逆时针,并定义路径 gamma_0 为具有切割线的任意环路(前向和反向贡献在切割线上相互抵消),以便绕过 z_0。则总路径为

 gamma=gamma_0+gamma_r,
(3)

因此

 ∮_gamma(f(z)dz)/(z-z_0)=∮_(gamma_0)(f(z)dz)/(z-z_0)+∮_(gamma_r)(f(z)dz)/(z-z_0).
(4)

根据柯西积分定理,沿任何不包围极点的路径的围道积分为 0。因此,上述方程中的第一项为 0,因为 gamma_0 不包围极点,我们剩下

 ∮_gamma(f(z)dz)/(z-z_0)=∮_(gamma_r)(f(z)dz)/(z-z_0).
(5)

现在,令 z=z_0+re^(itheta),所以 dz=ire^(itheta)dtheta。则

∮_gamma(f(z)dz)/(z-z_0)=∮_(gamma_r)(f(z_0+re^(itheta)))/(re^(itheta))ire^(itheta)dtheta
(6)
=∮_(gamma_r)f(z_0+re^(itheta))idtheta.
(7)

但是我们可以自由地让半径 r 缩小到 0,所以

∮_gamma(f(z)dz)/(z-z_0)=lim_(r->0)∮_(gamma_r)f(z_0+re^(itheta))idtheta
(8)
=∮_(gamma_r)f(z_0)idtheta
(9)
=if(z_0)∮_(gamma_r)dtheta
(10)
=2piif(z_0),
(11)

给出 (1)。

如果绕点 z_0 进行多次循环,则方程 (11) 变为

 n(gamma,z_0)f(z_0)=1/(2pii)∮_gamma(f(z)dz)/(z-z_0),
(12)

其中 n(gamma,z_0)围道卷绕数

对于 f(z) 的导数,也存在类似的公式:

f^'(z_0)=lim_(h->0)(f(z_0+h)-f(z_0))/h
(13)
=lim_(h->0)1/(2piih)[∮_gamma(f(z)dz)/(z-z_0-h)-∮_gamma(f(z)dz)/(z-z_0)]
(14)
=lim_(h->0)1/(2piih)∮_gamma(f(z)[(z-z_0)-(z-z_0-h)]dz)/((z-z_0-h)(z-z_0))
(15)
=lim_(h->0)1/(2piih)∮_gamma(hf(z)dz)/((z-z_0-h)(z-z_0))
(16)
=1/(2pii)∮_gamma(f(z)dz)/((z-z_0)^2).
(17)

再次迭代,

 f^('')(z_0)=2/(2pii)∮_gamma(f(z)dz)/((z-z_0)^3).
(18)

继续此过程并添加围道卷绕数 n

 n(gamma,z_0)f^((r))(z_0)=(r!)/(2pii)∮_gamma(f(z)dz)/((z-z_0)^(r+1)).
(19)

参见

辐角原理, 柯西积分定理, 复残数, 围道积分, 莫雷拉定理, 极点

使用 Wolfram|Alpha 探索

参考文献

Arfken, G. "Cauchy's Integral Formula." §6.4 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 371-376, 1985.Kaplan, W. "Cauchy's Integral Formula." §9.9 in Advanced Calculus, 4th ed. Reading, MA: Addison-Wesley, pp. 598-599, 1991.Knopp, K. "Cauchy's Integral Formulas." Ch. 5 in Theory of Functions Parts I and II, Two Volumes Bound as One, Part I. New York: Dover, pp. 61-66, 1996.Krantz, S. G. "The Cauchy Integral Theorem and Formula." §2.3 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 26-29, 1999.Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 367-372, 1953.Woods, F. S. "Cauchy's Theorem." §146 in Advanced Calculus: A Course Arranged with Special Reference to the Needs of Students of Applied Mathematics. Boston, MA: Ginn, pp. 352-353, 1926.

在 Wolfram|Alpha 上被引用

柯西积分公式

引用为

Weisstein, Eric W. "柯西积分公式。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/CauchyIntegralFormula.html

学科分类