最小纽结图的缠绕度不是纽结不变量,Perko 对 就是一个例子,它们具有不同的缠绕度 (Hoste et al. 1998)。 这是因为,虽然缠绕度在 Reidemeister 移动 II 和 III 下是不变的,但对于 I 型 Reidemeister 移动,它可能会增加或减少一 (Adams 1994, p. 153)。
Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 152-153 and 185, 1994.Hoste, J.; Thistlethwaite, M.; and Weeks, J. "The First Knots." Math. Intell.20, 33-48, Fall 1998.Kauffman, L. Knots and Physics. Teaneck, NJ: World Scientific, p. 19, 1991.Kaul, R. K. "Topological Quantum Field Theories--A Meeting Ground for Physicists and Mathematicians." 15 Jul 1999. http://arxiv.org/abs/hep-th/9907119.Thistlethwaite, M. B. "Kauffman's Polynomial and Alternating Links.' Topology27, 311-318, 1988.