主题
Search

转置


双重索引对象的转置是通过将所有元素 a_(ij) 替换为 a_(ji) 得到的对象。对于二阶张量秩 张量 a_(ij),张量转置就是 a_(ji)。矩阵转置,最常用的写法是 A^(T),是通过交换 A 的行和列得到的矩阵,并满足恒等式

 (A^(T))^(-1)=(A^(-1))^(T).
(1)

遗憾的是,常用的还有几种其他表示法,如下表所示。本文档中使用 A^(T) 表示法。

表示法参考文献
A^(T)本文档;Golub and Van Loan (1996), Strang (1988)
A^~Arfken (1985, p. 201), Griffiths (1987, p. 223)
A^'Ayres (1962, p. 11), Courant and Hilbert (1989, p. 9)

矩阵或张量的转置在 Wolfram 语言 中实现为转置[A].

两个转置的乘积满足

(B^(T)A^(T))_(ij)=(b^(T))_(ik)(a^(T))_(kj)
(2)
=b_(ki)a_(jk)
(3)
=a_(jk)b_(ki)
(4)
=(AB)_(ji)
(5)
=(AB)_(ij)^T,
(6)

其中爱因斯坦求和已被用于对重复索引进行隐式求和。因此,

 (AB)^(T)=B^(T)A^(T).
(7)

另请参阅

反对称矩阵, 合同矩阵, 共轭矩阵, 共轭转置, 对称矩阵

使用 Wolfram|Alpha 探索

参考文献

Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, p. 201, 1985.Ayres, F. Jr. Schaum's Outline of Theory and Problems of Matrices. New York: Schaum, pp. 11-12, 1962.Boothroyd, J. "Algorithm 302: Transpose Vector Stored Array." Comm. ACM 10, 292-293, May 1967.Brenner, N. "Algorithm 467: Matrix Transposition N Place [F1]." Comm. ACM 16, 692-694, Nov. 1973.Cate, E. G. and Twigg, D. W. "Algorithm 513: Analysis of In-Situ Transposition." ACM Trans. Math. Software 3, 104-110, March 1977.Courant, R. and Hilbert, D. Methods of Mathematical Physics, Vol. 1. New York: Wiley, 1989.Golub, G. H. and Van Loan, C. F. Matrix Computations, 3rd ed. Baltimore, MD: Johns Hopkins, 1989.Griffiths, D. J. Introduction to Elementary Particles. New York: Wiley, p. 220, 1987.Knuth, D. E. "Transposing a Rectangular Matrix." Ch. 1.3.3 Ex. 12. The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd ed. Reading, MA: Addison-Wesley, pp. 182 and 523, 1997.Laflin, S. and Brebner, M. A. "Algorithm 380: In-Situ Transposition of a Rectangular Matrix. [F1]." Comm. ACM 13, 324-326, May 1970.Strang, G. Introduction to Linear Algebra. Wellesley, MA: Wellesley-Cambridge Press, 1993.Strang, G. Linear Algebra and its Applications, 3rd ed. Philadelphia, PA: Saunders, 1988.Windley, P. F. "Transposing Matrices in a Digital Computer." Computer J. 2, 47-48, Apr. 1959.

在 Wolfram|Alpha 中被引用

转置

请引用为

Weisstein, Eric W. "转置。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/Transpose.html

主题分类