主题
Search

Salem 常数


Salem 常数,有时也称为 Salem 数,是一组数,其中 Pisot 数 的每个点都是来自两侧的 极限点 (Salem 1945)。Salem 常数是 代数整数 >1,其中一个或多个共轭复数在 单位圆 上,其余的在内部 (Le Lionnais 1983, p. 150)。已知的最小 Salem 数是由 Lehmer (1933) 发现的,作为以下 的最大根

 x^(10)+x^9-x^7-x^6-x^5-x^4-x^3+x+1=0,

 sigma_1=1.176280818...

(OEIS A073011;Le Lionnais 1983, p. 35)。这是出现在 Lehmer's Mahler 测度问题 中的著名常数。

Boyd (1977) 发现了以下小 Salem 数的表格,并认为 sigma_1, sigma_2, sigma_3, 和 sigma_4 是最小的 Salem 数。 符号 1 1 0 -1 -1 -1 是 1 1 0 -1 -1 -1 -1 -1 0 1 1 的简写,即上述多项式的系数。

ksigma_k degrees多项式
11.1762808183101 1 0 -1 -1 -1
21.1883681475181 -1 1 -1 0 0 -1 1 -1 1
31.2000265240141 0 0 -1 -1 0 0 1
41.2026167437141 0 -1 0 0 0 0 -1
51.2163916611101 0 0 0 -1 -1
61.2197208590181 -1 0 0 0 0 0 0 -1 1
71.2303914344101 0 0 -1 0 -1
81.2326135486201 -1 0 0 0 -1 1 0 0 -1 1
91.2356645804221 0 -1 -1 0 0 0 1 1 0 -1 -1
101.2363179318161 -1 0 0 0 0 0 0 -1
111.2375048212261 0 -1 0 0 -1 0 0 -1 0 1 0 0 1
121.2407264237121 -1 1 -1 0 0 -1
131.2527759374181 0 0 0 0 0 -1 -1 -1 -1
141.2533306502201 0 -1 0 0 -1 0 0 0 0 0
151.2550935168141 0 -1 -1 0 1 0 -1
161.2562211544181 -1 0 0 -1 1 0 0 0 -1
171.2601035404241 -1 0 0 -1 1 0 -1 1 -1 0 1 -1
181.2602842369221 -1 0 -1 1 0 0 0 -1 1 -1 1
191.2612309611101 0 -1 0 0 -1
201.2630381399261 -1 0 0 0 0 -1 0 0 0 0 0 0 1
211.2672964425141 -1 0 0 0 0 -1 1
221.280638156381 0 0 -1 -1
231.2816913715261 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1
241.2824955606201 -2 2 -2 2 -2 1 0 -1 1 -1
251.2846165509181 0 0 0 -1 0 -1 -1 0 -1
261.2847468215261 -2 1 1 -2 1 0 0 -1 1 0 -1 1 -1
271.2850993637301 0 0 0 0 -1 -1 -1 -1 -1 -1 0 0 0 0 1
281.2851215202301 -2 2 -2 1 0 -1 2 -2 1 0 -1 1 -1 1 -1
291.2851856708301 -1 0 0 0 0 0 0 -1 0 0 0 -1 0 0 -1
301.2851967268261 0 -1 -1 0 0 0 1 0 -1 -1 0 1 1
311.2851991792441 -1 0 0 0 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 1
321.2852354362301 0 -1 0 0 -1 -1 0 0 0 1 0 0 1 0 -1
331.2854090648341 -1 0 0 -1 1 -1 0 1 -1 1 0 -1 1 -1 0 1 -1
341.2863959668181 -2 2 -2 2 -2 2 -3 3 -3
351.2867301820261 -1 0 0 -1 1 -1 0 1 -1 1 0 -1 1
361.2917414257241 -1 0 0 0 0 -1 0 0 0 0 0 0
371.2920391602201 0 -1 0 0 -1 0 0 -1 0 1
381.2934859531101 0 -1 -1 0 1
391.2956753719181 -1 0 0 -1 1 -1 0 1 -1

参见

Lehmer's Mahler 测度问题, Pisot 数

使用 探索

参考文献

Boyd, D. W. "Small Salem Numbers." Duke Math. J. 44, 315-328, 1977.Boyd, D. W. "Pisot and Salem Numbers in Intervals of the Real Line." Math. Comput. 32, 1244-1260, 1978.Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 1983.Lehmer, D. H. "Factorization of Certain Cyclotomic Functions." Ann. Math., Ser. 2 34, 461-479, 1933.Mossinghoff, M. "Small Salem Numbers." http://www.cecm.sfu.ca/~mjm/Lehmer/lists/SalemList.html.Salem, R. "Power Series with Integral Coefficients." Duke Math. J. 12, 153-172, 1945.Sloane, N. J. A. Sequence A073011 in "The On-Line Encyclopedia of Integer Sequences."Stewart, C. L. "Algebraic Integers whose Conjugates Lie Near the Unit Circle." Bull. Soc. Math. France 106, 169-176, 1978.

在 中被引用

Salem 常数

请引用为

Weisstein, Eric W. “Salem 常数。” 来自 --一个 Wolfram 网络资源。 https://mathworld.net.cn/SalemConstants.html

主题分类