主题
Search

Riesel 数


存在无限多个奇数 整数 k 使得对于每个 n>=1k·2^n-1 都是合数。具有此属性的数 k 称为 Riesel 数,而将减号替换为加号的类似数称为第二类 Sierpiński 数

已知的最小 Riesel 数是 k=509203,但截至 2014 年 1 月,仍有 52 个较小的候选数,对于所有已检查的 n,它们仅生成合数 (Ribenboim 1996, p. 358; Ballinger and Keller; Keller):2293, 9221, 23669, 31859, 38473, 46663, 67117, 74699, 81041, 93839, 97139, 107347, 121889, 129007, 143047, 146561, 161669, 192971, 206039, 206231, 215443, 226153, 234343, 245561, 250027, 273809, 315929, 319511, 324011, 325123, 327671, 336839, 342847, 344759, 362609, 363343, 364903, 365159, 368411, 371893, 384539, 386801, 397027, 402539, 409753, 444637, 470173, 474491, 477583, 485557, 494743, 和 502573。

证明或反驳 k=509203 是最小 Riesel 数的问题有时被称为 Riesel 问题或 Riesel 猜想。

a(k) 为使得 (2k-1)·2^n-1素数的最小 n,则前几个值为 2, 0, 2, 1, 1, 2, 3, 1, 2, 1, 1, 4, 3, 1, 4, 1, 2, 2, 1, 3, 2, 7, ... (OEIS A046069),第二小 n 为 3, 1, 4, 5, 3, 26, 7, 2, 4, 3, 2, 6, 9, 2, 16, 5, 3, 6, 2553, ... (OEIS A046070)。

迄今为止发现的 k·2^n-1 形式的素数,提供了对较小 Riesel 数存在性的反驳,总结在下表中 (Keller)。

kn发现者日期
659800516Dave Linton01 Mar 2004
267732465343Anonymous & RSP01 Dec 2006
27253272347Ray Ballinger10 Oct 1998
39269287048Richard Heylen25 Mar 2002
405976808509Frank Meador25 Dec 2013
42779322908Ray Ballinger26 Jul 1999
43541507098Ray Ballinger01 Oct 2000
46271428210Patrick Pirson29 Apr 2001
655313629342Adrian Schori & PrimeGrid05 Apr 2011
710091185112Drew Bishop & RSP05 Dec 2004
89707578313Richard Heylen02 Apr 2003
93997864401Guido Stolz & RSP01 Apr 2004
98939575144Olivier Haeberlé30 Nov 2001
103259615076Olivier Haeberlé23 Dec 2002
104917340181Janusz Szmidt13 Nov 1999
109897630221Olivier Haeberlé22 Apr 2003
1104131591999Will Fisher & RSP08 Jun 2005
1139833201175Ian Keogh & RSP01 May 2008
1144872198389Bruce White & RSP23 May 2006
1235473804809Jakub Łuszczek & PrimeGrid08 May 2011
126667626497Ray Ballinger09 Jun 2003
130139280296Dale Andrews02 Feb 2002
1419414299438Scott Brown & PrimeGrid26 May 2011
144643498079Richard Heylen12 Dec 2000
148901360338Mark Rodenkirch05 Mar 2002
1497971414137Peter van Hoof & RSP13 Mar 2005
1508471076441Darren Wallace & RSP15 Aug 2004
1527131154707Ray Ballinger23 Oct 2004
159371284166Janusz Szmidt14 Jan 2002
170591866870Drew Bishop & RSP15 Apr 2004
189463324103Dave Linton15 Jul 2000
1912493417696Jonathan Pritchard & PrimeGrid21 Nov 2010
1920891395688Guido Stolz & RSP10 May 2004
1965972178109Auritania Du & RSP09 May 2006
201193457615Daval Davis03 Feb 2003
204223696891Olivier Haeberlé23 Mar 2003
212893730387Olivier Haeberlé15 Oct 2003
215503649891Olivier Haeberlé28 Apr 2003
220033719731Olivier Haeberlé19 Apr 2004
220063306335Olivier Haeberlé03 Sep 1999
222997613153Olivier Haeberlé28 Nov 2001
2348471535589Darren Wallace & RSP09 May 2005
235601295338Helmut Zeisel06 Mar 2003
245051285750Tom Kuechler15 Nov 2000
246299752600Kevin O'Hare & RSP23 Jan 2004
2521915497878Jan Haller & PrimeGrid23 Jun 2012
261221689422Sean Faith & RSP22 Dec 2003
267763264115Dave Linton19 Feb 2000
2752932335007Japke Rosink & RSP21 Sep 2006
277153429819Jeff Wolfe21 Nov 2002
279703616235Dhumil Zaveri & RSP07 Jan 2004
299617428917Dave Linton22 Jul 2002
3042076643565Randy Ready & PrimeGrid11 Oct 2013
309817901173Helmut Michel & RSP07 Jun 2004
3256271472117Will Fisher & RSP05 Apr 2005
3426732639439Dhumil Zaveri & RSP28 Apr 2007
3450671876573Dave Linton13 Nov 2005
3501071144101Sean Faith & RSP24 Oct 2004
3531594331116Jaakko Reinman & PrimeGrid31 May 2011
357491609338Lucas Schmid17 Jan 2003
3576591779748Drew Bishop & RSP25 Sep 2005
376993293603Reto Keiser08 Sep 2002
382691431722Ray Ballinger27 Feb 2003
3980236418059Vladimir Volynsky & PrimeGrid05 Oct 2013
398533419107Dave Linton04 Sep 2002
401143532927Olivier Haeberlé11 Jun 2003
401617470149Dave Linton27 Dec 2002
4127171084409Holger Meissner & RSP22 Aug 2004
4152673771929Alexey Tarasov & PrimeGrid08 May 2011
416413424791Dave Linton28 Apr 2003
4176431800787Greg Childers & RSP05 Oct 2004
4286393506452Brett Melvold & PrimeGrid14 Jan 2011
443857369457Nuutti Kuosa27 Aug 2001
4504572307905Jeff Smith & RSP28 Mar 2006
458743547791Olivier Haeberlé22 Oct 2003
460139779536Drew Bishop & RSP26 Mar 2004
465869497596Lucas Schmid27 Jan 2003
4679171993429Steven Wong & RSP25 Dec 2005
4699491649228Steven Wong & RSP28 Oct 2007
4857673609357Chris Cardall & RSP24 Jun 2008
5006211138518Darren Wallace & RSP18 Oct 2004
5025411199930Ryan Sefko & RSP21 Dec 2004
5046131136459Magnus Mischel & RSP17 Oct 2004

另请参阅

Brier 数, Cunningham 数, 梅森数, Sierpiński 合数定理, 第二类 Sierpiński 数, Thâbit ibn Kurrah 规则

使用 探索

参考文献

Ballinger, R. and Keller, W. "The Riesel Problem: Search for Remaining Candidates." http://www.prothsearch.net/rieselsearch.html.Keller, W. "The Riesel Problem: Definition and Status." http://www.prothsearch.net/rieselprob.html.Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, p. 357, 1996.Riesel, H. "Några stora primtal." Elementa 39, 258-260, 1956.Riesel, H. Prime Numbers and Computer Methods for Factorization, 2nd ed. Basel: Birkhäuser, pp. 394-398, 1994.Riesel Sieve Project. "The Riesel Sieve Project: A Distributed Effort to Prove the Riesel Conjecture." http://www.rieselsieve.com/.Sloane, N. J. A. Sequences A046067, A046068, A046069, and A046070 in "The On-Line Encyclopedia of Integer Sequences."

在 中被引用

Riesel 数

请按如下方式引用

Eric W. Weisstein "Riesel 数。" 来自 Web 资源。 https://mathworld.net.cn/RieselNumber.html

主题分类