主题
Search

多联骨牌


多联骨牌是多米诺骨牌的推广,指由n个大小相等的正方形以边重合的方式排列而成的一组图形。多联骨牌最初被 Gardner (1957) 称为“超级多米诺骨牌”。含有n个正方形的多联骨牌被称为n -多联骨牌或“n -omino。”

多联骨牌可以使用 Wolfram 语言方便地表示和可视化,使用方法如下:ArrayMesh.

自由多联骨牌可以拿起和翻转,因此镜像图像被认为是相同的。单面多联骨牌不能翻转,但可以旋转,因此不同的旋转方向是相同的,但具有不同手性的图形被认为是不同的。固定多联骨牌(也称为“网格动物”)如果具有不同的手性方向,则被认为是不同的。

Polyominoes

当未指定要处理的多联骨牌类型时,通常假定它们是自由的。只有一个唯一的 2-omino(多米诺骨牌),以及两个不同的 3-omino(直型和L-三联骨牌)。4-ominoes (四联骨牌) 被称为直型LT正方形斜四联骨牌。5-ominoes (五联骨牌) 被称为fILNPTUVWXyZ (Golomb 1995)。另一种常见的命名方案用ROQS替换fILN,以便使用从 O 到 Z 的所有字母 (Berlekamp et al. 1982)。

PolyominoesWithHoles

上面说明了前几个带孔的多联骨牌 (Myers)。

Redelmeier (1981) 计算了n<=24自由固定多联骨牌的数量,Mertens (1990) 给出了一个简单的计算机程序。下表给出了前几个n自由(Lunnon 1971, 1972;Read 1978;Redelmeier 1981;Ball 和 Coxeter 1987;Conway 和 Guttmann 1995;Goodman 和 O'Rourke 1997,第 229 页)、固定(Redelmeier 1981)和单面多联骨牌(Redelmeier 1981;Golomb 1995;Goodman 和 O'Rourke 1997,第 229 页)的数量,以及包含孔的多联骨牌的数量(Parkin et al. 1967,Madachy 1969,Golomb 1994)。

n名称自由单面固定带孔
SloaneA000105A000988A001168A001419
1一联骨牌1110
2二联骨牌1120
3三联骨牌2260
4四联骨牌57190
5五联骨牌1218630
6六联骨牌35602160
7七联骨牌1081967601
8八联骨牌36970427256
912852500991037
104655918936446195
111707333896135268979
12636001267595058614663
13238591476270190389021474
149019711802312720487496496
153426576684977727394666425449

目前已知的n -多联骨牌数量的最佳界限是

 3.72^n<P(n)<4.65^n

(Eden 1961, Klarner 1967, Klarner 和 Rivest 1973, Ball 和 Coxeter 1987)。

多联骨牌推广到正方形以外的其他基本形状被称为多形体,其中最著名的例子是多边形菱形多边形六边形


另请参阅

列凸多联骨牌凸多联骨牌多米诺骨牌七联骨牌六联骨牌网格多边形一联骨牌八联骨牌五联骨牌Polyabolo多立方体多形体多边形六边形多边形菱形多联骨牌平铺Polyplet行凸多联骨牌自避多边形四联骨牌三联骨牌

使用 Wolfram|Alpha 探索

参考文献

Atkin, A. O. L. and Birch, B. J. (Eds.). Computers in Number Theory: Proc. Sci. Research Council Atlas Symposium No. 2 Held at Oxford from 18-23 Aug., 1969. New York: Academic Press, 1971.Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 109-113, 1987.Beeler, M. Item 112 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, pp. 48-50, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/polyominos.html#item112.Beineke, L. W. and Wilson, R. J. (Eds.). Selected Topics in Graph Theory. New York: Academic Press, pp. 417-444, 1978.Berge, C.; Chen, C. C.; Chvátal, V.; and Seow, C. S. "Combinatorial Properties of Polyominoes." Combin. 1, 217-224, 1981.Berlekamp, E. R.; Conway, J. H; and Guy, R. K. Winning Ways for Your Mathematical Plays, Vol. 1: Adding Games, 2nd ed. Wellesley, MA: A K Peters, 1982.Berlekamp, E. R.; Conway, J. H; and Guy, R. K. Winning Ways for Your Mathematical Plays, Vol. 2: Games in Particular. London: Academic Press, 1982.Bousquet-Mélou, M.; Guttmann, A. J.; Orrick, W. P.; and Rechnitzer, A. "Inversion Relations, Reciprocity and Polyominoes." 23 Aug 1999. http://arxiv.org/abs/math.CO/9908123.Clarke, A. L. "Polyominoes." http://www.recmath.com/PolyPages/PolyPages/Polyominoes.html.Conway, A. R. and Guttmann, A. J. "On Two-Dimensional Percolation." J. Phys. A: Math. Gen. 28, 891-904, 1995.Eden, M. "A Two-Dimensional Growth Process." Proc. Fourth Berkeley Symposium Math. Statistics and Probability, Held at the Statistical Laboratory, University of California, June 30-July 30, 1960. Berkeley, CA: University of California Press, pp. 223-239, 1961.Finch, S. R. "Klarner's Polyomino Constant." §5.19 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 378-382, 2003.Gardner, M. "Mathematical Games: About the Remarkable Similarity between the Icosian Game and the Towers of Hanoi." Sci. Amer. 196, 150-156, May 1957.Gardner, M. "Polyominoes and Fault-Free Rectangles." Ch. 13 in Martin Gardner's New Mathematical Diversions from Scientific American. New York: Simon and Schuster, pp. 150-161, 1966.Gardner, M. "Polyominoes and Rectification." Ch. 13 in Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind from Scientific American. New York: Vintage, pp. 172-187, 1978.Golomb, S. W. "Checker Boards and Polyominoes." Amer. Math. Monthly 61, 675-682, 1954.Golomb, S. W. Polyominoes: Puzzles, Patterns, Problems, and Packings, 2nd ed. Princeton, NJ: Princeton University Press, 1995.Goodman, J. E. and O'Rourke, J. (Eds.). Handbook of Discrete & Computational Geometry. Boca Raton, FL: CRC Press, 1997.Keller, M. "Counting Polyforms." http://members.aol.com/wgreview/polyenum.html.Klarner, D. A. "Cell Growth Problems." Can. J. Math. 19, 851-863, 1967.Klarner, D. A. and Riverst, R. "A Procedure for Improving the Upper Bound for the Number of n-ominoes." Can. J. Math. 25, 585-602, 1973.Update a linkLei, A. "Bigger Polyominoes." http://www.cs.ust.hk/~philipl/omino/bigpolyo.htmlUpdate a linkLei, A. "Polyominoes." http://www.cs.ust.hk/~philipl/omino/omino.htmlLunnon, W. F. "Counting Polyominoes." In Computers in Number Theory (Ed. A. O. L. Atkin and B. J. Brich). London: Academic Press, pp. 347-372, 1971.Lunnon, W. F. "Counting Hexagonal and Triangular Polyominoes." In Graph Theory and Computing (Ed. R. C. Read). New York: Academic Press, 1972.Madachy, J. S. "Pentominoes: Some Solved and Unsolved Problems." J. Rec. Math. 2, 181-188, 1969.Martin, G. Polyominoes: A Guide to Puzzles and Problems in Tiling. Washington, DC: Math. Assoc. Amer., 1991.Marzetta, A. "List of Polyominoes of order 4..7." http://wwwjn.inf.ethz.ch/ambros/polyo-list.html.Mertens, S. "Lattice Animals--A Fast Enumeration Algorithm and New Perimeter Polynomials." J. Stat. Phys. 58, 1095-1108, 1990.Montgomery-Smith, S. "Polyomino Puzzles Software." http://www.math.missouri.edu/~stephen/software/polyomino/.Myers, J. "Polyomino Tiling." http://www.srcf.ucam.org/~jsm28/tiling/.Parkin, T. R.; Lander, L. J.; and Parkin, D. R. "Polyomino Enumeration Results." SIAM Fall Meeting. Santa Barbara, CA, 1967.Putter, G. "Gerard's Universal Polyomino Solver." http://www.xs4all.nl/~gp/PolyominoSolver/Polyomino.html.Read, R. C. "Contributions to the Cell Growth Problem." Canad. J. Math. 14, 1-20, 1962.Read, R. C. "Some Applications of Computers in Graph Theory." In Selected Topics in Graph Theory (Ed. L. W. Beineke and R. J. Wilson). New York: Academic Press, pp. 417-444, 1978.Redelmeier, D. H. "Counting Polyominoes: Yet Another Attack." Discrete Math. 36, 191-203, 1981.Ruskey, F. "Information on Polyominoes." http://www.theory.csc.uvic.ca/~cos/inf/misc/PolyominoInfo.html.Schroeppel, R. Item 77 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 30, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/proposed.html#item77.Sloane, N. J. A. Sequences A000105/M1425, A000988/M1749, A001168/M1639, and A001419/M4226 in "The On-Line Encyclopedia of Integer Sequences."Vichera, M. "Polyforms." http://www.vicher.cz/puzzle/polyforms.htm.von Seggern, D. CRC Standard Curves and Surfaces. Boca Raton, FL: CRC Press, pp. 342-343, 1993.Weisstein, E. W. "Books about Polyominoes." http://www.ericweisstein.com/encyclopedias/books/Polyominoes.html.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, p. 117, 1991.Wells, D. Recreations in Logic. New York: Dover, 1979.

在 Wolfram|Alpha 上被引用

多联骨牌

请引用为

Weisstein, Eric W. "Polyomino." 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/Polyomino.html

学科分类