主题
Search

列凸多联骨牌


ColumnConvexPolyomino

列凸多联骨牌是一种自回避凸多联骨牌,其与任何垂直线的交集最多有两个连通分量。列凸多联骨牌也称为垂直凸多联骨牌。行凸多联骨牌的定义与之类似。列凸 a(n) -多联骨牌的数量 n 由三阶递推关系给出

 a(n)=5a(n-1)-7a(n-2)+4a(n-3)
(1)

对于 n>=5,其中 a(1)=1, a(2)=2, a(3)=6, 和 a(4)=19 (Hickerson 1999)。前几个是 1, 2, 6, 19, 61, 196, 629, 2017, ... (OEIS A001169)。a(n) 具有生成函数

f(x)=(x(1-x)^3)/(1-5x+7x^2-4x^3)
(2)
=x+2x^2+6x^3+19x^4+....
(3)

另请参阅

凸多联骨牌, 多联骨牌, 行凸多联骨牌

使用 Wolfram|Alpha 探索

参考文献

Delest, M.-P. and Viennot, G. "Algebraic Language and Polyominoes [sic] Enumerations." Theor. Comput. Sci. 34, 169-206, 1984.Enting, I. G. and Guttmann, A. J. "On the Area of Square Lattice Polygons." J. Statist. Phys. 58, 475-484, 1990.Hickerson, D. "Counting Horizontally Convex Polyominoes." J. Integer Sequences 2, No. 99.1.8, 1999. http://www.math.uwaterloo.ca/JIS/VOL2/HICK2/chcp.html.Klarner, D. A. "Some Results Concerning Polyominoes." Fib. Quart. 3, 9-20, 1965.Klarner, D. A. "Cell Growth Problems." Canad. J. Math. 19, 851-863, 1967.Klarner, D. A. "The Number of Graded Partially Ordered Sets." J. Combin. Th. 6, 12-19, 1969.Lunnon, W. F. "Counting Polyominoes." In Computers in Number Theory, Proc. Science Research Council Atlas Symposium No. 2 held at Oxford, from 18-23 August, 1969 (Ed. A. O. L. Atkin and B. J. Birch). London: Academic Press, pp. 347-372, 1971.Pólya, G. "On the Number of Certain Lattice Polygons." J. Combin. Th. 6, 102-105, 1969.Sloane, N. J. A. Sequence A001169/M1636 in "The On-Line Encyclopedia of Integer Sequences."Stanley, R. P. "Generating Functions." In Studies in Combinatorics (Ed. G.-C. Rota). Washington, DC: Amer. Math. Soc., pp. 100-141, 1978.Stanley, R. P. Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, p. 259, 1999.Temperley, H. N. V. "Combinatorial Problems Suggested by the Statistical Mechanics of Domains and of Rubber-Like Molecules." Phys. Rev. Ser. 2 103, 1-16, 1956.

在 Wolfram|Alpha 中引用

列凸多联骨牌

请引用为

Weisstein, Eric W. "列凸多联骨牌。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/Column-ConvexPolyomino.html

学科分类