Bender, E. A. and Goldman, J. R. "On the Applications of Möbius Inversion in Combinatorial Analysis." Amer. Math. Monthly82, 789-803, 1975.Bernstein, M. and Sloane, N. J. A. "Some Canonical Sequences of Integers." Linear Algebra Appl.226/228, 57-72, 1995.Gessel, I. and Rota, C.-G. (Eds.). Classic Papers in Combinatorics. Boston, MA: Birkhäuser, 1987.Hardy, G. H. and Wright, E. M. §17.10 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.Rota, G.-C. "On the Foundations of Combinatorial Theory I. Theory of Möbius Functions." Z. für Wahrscheinlichkeitsth.2, 340-368, 1964.Sloane, N. J. A. Sequences A000005/M0246, A000010/M0299, A001221/M0056, and A004018/M3218 in "The On-Line Encyclopedia of Integer Sequences."Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995.Stanley, R. P. Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, p. 259, 1999.