主题
Search

笛卡尔叶形线


FoliumofDescartes

笛卡尔提出的一个平面曲线,用于挑战费马的求极值技术。参数形式为:

x=(3at)/(1+t^3)
(1)
y=(3at^2)/(1+t^3).
(2)

该曲线在 t=-1 处存在不连续性。当 t-1 到 0 变化时生成左翼,当 t 从 0 到 infty 变化时生成环,当 t-infty-1 变化时生成右翼。

笛卡尔坐标系中,

 x^3+y^3=3axy
(3)

(MacTutor 档案馆)。渐近线的方程为:

 y=-a-x.
(4)

笛卡尔叶形线的曲率切线角为:

kappa(t)=(2(1+t^3)^4)/(3a(1+4t^2-4t^3-4t^5+4t^6+t^8)^(3/2))
(5)
phi(t)=tan^(-1)[(t(t^3-2))/((2t^3-1))]+H(t-2^(-1/3)),
(6)

其中 H(t)单位阶跃函数

参数方程转换为极坐标得到:

r^2=(9a^2t^2(1+t^2))/((1+t^3)^2)
(7)
theta=tan^(-1)t,
(8)

因此极坐标方程为:

 r=(3asecthetatantheta)/(1+tan^3theta).
(9)
FoliumofDescartesArea

曲线围成的面积为:

A=1/2intr^2dtheta
(10)
=int_0^(pi/2)(3asecthetatantheta)/(1+tan^3theta)dtheta
(11)
=3/2a^2.
(12)

环的弧长由下式给出:

s=3aint_0^infty(sqrt(1+t^2(4-4t-4t^3+4t^4+t^6)))/((1+t^3)^2)dt
(13)
=4.917488...a.
(14)

参见

叶形线

使用 Wolfram|Alpha 探索

参考文献

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 218, 1987.Gray, A. Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 77-82, 1997.Lawrence, J. D. A Catalog of Special Plane Curves. New York: Dover, pp. 106-109, 1972.MacTutor History of Mathematics Archive. "Folium of Descartes." http://www-groups.dcs.st-and.ac.uk/~history/Curves/Foliumd.html.Smith, D. E. History of Mathematics, Vol. 2: Special Topics of Elementary Mathematics. New York: Dover, p. 328, 1958.Stroeker, R. J. "Brocard Points, Circulant Matrices, and Descartes' Folium." Math. Mag. 61, 172-187, 1988.Yates, R. C. "Folium of Descartes." In A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 98-99, 1952.

引用本页

Weisstein, Eric W. "笛卡尔叶形线。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/FoliumofDescartes.html

学科分类