主题
Search

二元正态分布


二元正态分布是具有概率密度函数的统计分布

 P(x_1,x_2)=1/(2pisigma_1sigma_2sqrt(1-rho^2))exp[-z/(2(1-rho^2))],
(1)

其中

 z=((x_1-mu_1)^2)/(sigma_1^2)-(2rho(x_1-mu_1)(x_2-mu_2))/(sigma_1sigma_2)+((x_2-mu_2)^2)/(sigma_2^2),
(2)

并且

 rho=cor(x_1,x_2)=(V_(12))/(sigma_1sigma_2)
(3)

x_1x_2相关性(Kenney 和 Keeping 1951, pp. 92 和 202-205; Whittaker 和 Robinson 1967, p. 329),V_(12) 是协方差。

二元正态分布的概率密度函数实现为MultinormalDistribution[{mu1, mu2}, {{sigma11, sigma12}, {sigma12, sigma22}}] 在 Wolfram 语言 包中MultivariateStatistics` .

边缘概率然后是

P(x_1)=int_(-infty)^inftyP(x_1,x_2)dx_2
(4)
=1/(sigma_1sqrt(2pi))e^(-(x_1-mu_1)^2/(2sigma_1^2))
(5)

并且

P(x_2)=int_(-infty)^inftyP(x_1,x_2)dx_1
(6)
=1/(sigma_2sqrt(2pi))e^(-(x_2-mu_2)^2/(2sigma_2^2))
(7)

(Kenney 和 Keeping 1951, p. 202)。

Z_1Z_2 是两个独立的正态变量,具有均值 mu_i=0sigma_i^2=1 对于 i=1, 2。然后,下面定义的变量 a_1a_2 是具有单位方差相关系数 rho 的二元正态分布

a_1=sqrt((1+rho)/2)z_1+sqrt((1-rho)/2)z_2
(8)
a_2=sqrt((1+rho)/2)z_1-sqrt((1-rho)/2)z_2.
(9)

为了推导二元正态概率函数,设 X_1X_2 是正态且独立分布的变量,具有均值 0 和方差 1,然后定义

Y_1=mu_1+sigma_(11)X_1+sigma_(12)X_2
(10)
Y_2=mu_2+sigma_(21)X_1+sigma_(22)X_2
(11)

(Kenney 和 Keeping 1951, p. 92)。变量 Y_1Y_2 自身也呈正态分布,具有均值 mu_1mu_2方差

sigma_1^2=sigma_(11)^2+sigma_(12)^2
(12)
sigma_2^2=sigma_(21)^2+sigma_(22)^2,
(13)

协方差

 V_(12)=sigma_(11)sigma_(21)+sigma_(12)sigma_(22).
(14)

协方差矩阵由下式定义

 V_(ij)=[sigma_1^2 rhosigma_1sigma_2; rhosigma_1sigma_2 sigma_2^2],
(15)

其中

 rho=(V_(12))/(sigma_1sigma_2)=(sigma_(11)sigma_(21)+sigma_(12)sigma_(22))/(sigma_1sigma_2).
(16)

现在,x_1x_2 的联合概率密度函数是

 f(x_1,x_2)dx_1dx_2=1/(2pi)e^(-(x_1^2+x_2^2)/2)dx_1dx_2,
(17)

但从 (◇) 和 (◇) 中,我们得到

 [y_1-mu_1; y_2-mu_2]=[sigma_(11) sigma_(12); sigma_(21) sigma_(22)][x_1; x_2].
(18)

只要

 |sigma_(11) sigma_(12); sigma_(21) sigma_(22)|!=0,
(19)

就可以反转得到

[x_1; x_2]=[sigma_(11) sigma_(12); sigma_(21) sigma_(22)]^(-1)[y_1-mu_1; y_2-mu_2]
(20)
=1/(sigma_(11)sigma_(22)-sigma_(12)sigma_(21))[sigma_(22) -sigma_(12); -sigma_(21) sigma_(11)][y_1-mu_1; y_2-mu_2].
(21)

因此,

 x_1^2+x_2^2=([sigma_(22)(y_1-mu_1)-sigma_(12)(y_2-mu_2)]^2)/((sigma_(11)sigma_(22)-sigma_(12)sigma_(21))^2) 
 +([-sigma_(21)(y_1-mu_1)+sigma_(11)(y_2-mu_2)]^2)/((sigma_(11)sigma_(22)-sigma_(12)sigma_(21))^2),
(22)

展开 (22) 的分子得到

 sigma_(22)^2(y_1-mu_1)^2-2sigma_(12)sigma_(22)(y_1-mu_1)(y_2-mu_2)+sigma_(12)^2(y_2-mu_2)^2+sigma_(21)^2(y_1-mu_1)^2-2sigma_(11)sigma_(21)(y_1-mu_1)(y_2-mu_2)+sigma_(11)^2(y_2-mu_2)^2,
(23)

所以

 (x_1^2+x_2^2)(sigma_(11)sigma_(22)-sigma_(12)sigma_(21))^2 
=(y_1-mu_1)^2(sigma_(21)^2+sigma_(22)^2)-2(y_1-mu_1)(y_2-mu_2)(sigma_(11)sigma_(21)+sigma_(12)sigma_(22))+(y_2-mu_2)^2(sigma_(11)^2+sigma_(12)^2) 
=sigma_2^2(y_1-mu_1)^2-2(y_1-mu_1)(y_2-mu_2)(rhosigma_1sigma_2)+sigma_1^2(y_2-mu_2)^2 
=sigma_1^2sigma_2^2[((y_1-mu_1)^2)/(sigma_1^2)-(2rho(y_1-mu_1)(y_2-mu_2))/(sigma_1sigma_2)+((y_2-mu_2)^2)/(sigma_2^2)].
(24)

现在,(◇) 的分母

 sigma_(11)^2sigma_(21)^2+sigma_(11)^2sigma_(22)^2+sigma_(12)^2sigma_(21)^2+sigma_(12)^2sigma_(22)^2-sigma_(11)^2sigma_(21)^2 
 -2sigma_(11)sigma_(12)sigma_(21)sigma_(22)-sigma_(12)^2sigma_(22)^2=(sigma_(11)sigma_(22)-sigma_(12)sigma_(21))^2,
(25)

所以

1/(1-rho^2)=1/(1-(V_(12)^2)/(sigma_1^2sigma_2^2))
(26)
=(sigma_1^2sigma_2^2)/(sigma_1^2sigma_2^2-V_(12)^2)
(27)
=(sigma_1^2sigma_2^2)/((sigma_(11)^2+sigma_(12)^2)(sigma_(21)^2+sigma_(22)^2)-(sigma_(11)sigma_(21)+sigma_(12)sigma_(22))^2).
(28)

可以简单地写成

 1/(1-rho^2)=(sigma_1^2sigma_2^2)/((sigma_(11)sigma_(22)-sigma_(12)sigma_(21))^2),
(29)

并且

 x_1^2+x_2^2=1/(1-rho^2)[((y_1-mu_1)^2)/(sigma_1^2)-(2rho(y_1-mu_1)(y_2-mu_2))/(sigma_1sigma_2)+((y_2-mu_2)^2)/(sigma_2^2)].
(30)

求解 x_1x_2 并定义

 rho^'=(sigma_1sigma_2sqrt(1-rho^2))/(sigma_(11)sigma_(22)-sigma_(12)sigma_(21))
(31)

得到

x_1=(sigma_(22)(y_1-mu_1)-sigma_(12)(y_2-mu_2))/(rho^')
(32)
x_2=(-sigma_(21)(y_1-mu_1)+sigma_(11)(y_2-mu_2))/(rho^').
(33)

雅可比行列式

J((x_1,x_2)/(y_1,y_2))=|(partialx_1)/(partialy_1) (partialx_1)/(partialy_2); (partialx_2)/(partialy_1) (partialx_2)/(partialy_2)|=|(sigma_(22))/(rho^') -(sigma_(12))/(rho^'); -(sigma_(21))/(rho^') (sigma_(11))/(rho^')|
(34)
=1/(rho^('2))(sigma_(11)sigma_(22)-sigma_(12)sigma_(21))
(35)
=1/(rho^')=1/(sigma_1sigma_2sqrt(1-rho^2)),
(36)

所以

 dx_1dx_2=(dy_1dy_2)/(sigma_1sigma_2sqrt(1-rho^2))
(37)

并且

 1/(2pi)e^(-(x_1^2+x_2^2)/2)dx_1dx_2=1/(2pisigma_1sigma_2sqrt(1-rho^2))exp[-z/(2(1-rho^2))]dy_1dy_2,
(38)

其中

 z=((y_1-mu_1)^2)/(sigma_1^2)-(2rho(y_1-mu_1)(y_2-mu_2))/(sigma_1sigma_2)+((y_2-mu_2)^2)/(sigma_2^2).
(39)

证毕。

二元正态分布的特征函数由下式给出

phi(t_1,t_2)=int_(-infty)^inftyint_(-infty)^inftye^(i(t_1x_1+t_2x_2))P(x_1,x_2)dx_1dx_2
(40)
=Nint_(-infty)^inftyint_(-infty)^inftye^(i(t_1x_1+t_2x_2))exp[-z/(2(1-rho^2))]dx_1dx_2,
(41)

其中

 z=[((x_1-mu_1)^2)/(sigma_1^2)-(2rho(x_1-mu_1)(x_2-mu_2))/(sigma_1sigma_2)+((x_2-mu_2)^2)/(sigma_2^2)]
(42)

并且

 N=1/(2pisigma_1sigma_2sqrt(1-rho^2)).
(43)

现在让

u=x_1-mu_1
(44)
w=x_2-mu_2.
(45)

然后

 phi(t_1,t_2)=N^'int_(-infty)^infty(e^(it_2w)exp[-1/(2(1-rho^2))(w^2)/(sigma_2^2)])int_(-infty)^inftye^ve^(t_1u)dudw,
(46)

其中

v=-1/(2(1-rho^2))1/(sigma_1^2)[u^2-(2rhosigma_1w)/(sigma_2)u]
(47)
N^'=(e^(i(t_1mu_1+t_2mu_2)))/(2pisigma_1sigma_2sqrt(1-rho^2)).
(48)

在内积分中完成平方

 int_(-infty)^inftyexp{-1/(2(1-rho^2))1/(sigma_1^2)[u^2-(2rhosigma_1w)/(sigma_2)u]}e^(t_1u)du 
=int_(-infty)^inftyexp{-1/(2sigma_1^2(1-rho^2))[u-(rho_1sigma_1w)/(sigma^2)]^2}{1/(2sigma_1^2(1-rho^2))((rho_1sigma_1w)/(sigma_2))^2}e^(it_1u)du.
(49)

重新排列以将取决于 w 的指数项移到外积分之外,令

 v=u-rho(sigma_1w)/(sigma_2),
(50)

并写作

 e^(it_1u)=cos(t_1u)+isin(t_1u)
(51)

得到

 phi(t_1,t_2)=N^'int_(-infty)^inftye^(it_2w)exp[-1/(2sigma_2^2(1-rho^2))w^2]exp[(rho^2)/(2sigma_2^2(1-rho^2))w^2]int_(-infty)^inftyexp[-1/(2sigma_2^2(1-rho^2))v^2]{cos[t_1(v+(rhosigma_1w)/(sigma_2))]+isin[t_1(v+(rhosigma_1w)/(sigma_2))]}dvdw.
(52)

展开括号内的项得到

 [cos(t_1v)cos((rhosigma_1wt_1)/(sigma_2))-sin(t_1v)sin((rhosigma_1w)/(sigma_2t_1))]+i[sin(t_1v)cos((rhosigma_1w)/(sigma_2t_1))+cos(t_1v)sin((rhosigma_1wt_1)/(sigma_2))] 
=[cos((rhosigma_1wt_1)/(sigma_2))+isin((rhosigma_1wt_1)/(sigma_2))][cos(t_1v)+isin(t_1v)]=exp((irhosigma_1w)/(sigma_2)t_1)[cos(t_1v)+isin(t_1v)].
(53)

但是 e^(-ax^2)sin(bx)奇函数,因此正弦项上的积分消失,我们剩下

 phi(t_1,t_2)=N^'int_(-infty)^inftye^(it_2w)exp[-(w^2)/(2sigma_2^2)]exp[(rho^2w^2)/(2sigma_2^2(1-rho^2))]exp[(irhosigma_1wt_1)/(sigma_2)]dwint_(-infty)^inftyexp[-(v^2)/(2sigma_1^2(1-rho^2))]cos(t_1v)dv 
=N^'int_(-infty)^inftyexp[iw(t_2+t_1(rho(sigma_1)/(sigma_2)))]exp[-(w^2)/(2sigma_2^2)]dwint_(-infty)^inftyexp[-(v^2)/(2sigma_1^2(1-rho^2))]cos(t_1v)dv.
(54)

现在评估高斯积分

int_(-infty)^inftye^(ikx)e^(-ax^2)dx=int_(-infty)^inftye^(-ax^2)cos(kx)dx
(55)
=sqrt(pi/a)e^(-k^2/4a)
(56)

以获得特征函数的显式形式,

 phi(t_1,t_2)=(e^(i(t_1mu_1+t_2mu_2)))/(2pisigma_1sigma_2sqrt(1-rho^2)){sigma_2sqrt(2pi)exp[-1/4(t_2+rho(sigma_1)/(sigma_2)t_1)^22sigma_2^2]}{sigma_1sqrt(2pi(1-rho^2))exp[-1/4t_1^22sigma_1^2(1-rho^2)]} 
=e^(i(t_1mu_1+t_2mu_2))exp{-1/2[t_2^2sigma_2^2+2rhosigma_1sigma_2t_1t_2+rho^2sigma_1^2t_1^2+(1-rho^2)sigma_1^2t_1^2]} 
=exp[i(t_1mu_1+t_2mu_2)-1/2(sigma_1^2t_1^2+2rhosigma_1sigma_2t_1t_2+sigma_2^2t_2^2)].
(57)

在奇异情况下,

 |sigma_(11) sigma_(12); sigma_(21) sigma_(22)|=0
(58)

(Kenney 和 Keeping 1951, p. 94),由此得出

 sigma_(11)sigma_(22)=sigma_(12)sigma_(21)
(59)
y_1=mu_1+sigma_(11)x_1+sigma_(12)x_2
(60)
y_2=mu_2+(sigma_(12)sigma_(21))/(sigma_(11))x_2
(61)
=mu_2+(sigma_(11)sigma_(21)x_1+sigma_(12)sigma_(21)x_2)/(sigma_(11))
(62)
=mu_2+(sigma_(21))/(sigma_(11))(sigma_(11)x_1+sigma_(12)x_2),
(63)

所以

y_1=mu_1+x_3
(64)
y_2=mu_2+(sigma_(21))/(sigma_(11))x_3,
(65)

其中

x_3=y_1-mu_1
(66)
=(sigma_(11))/(sigma_(21))(y_2-mu_2).
(67)

标准化的二元正态分布取 sigma_1=sigma_2=1mu_1=mu_2=0。在这种特殊情况下,象限概率通过分析给出

P(x_1<=0,x_2<=0)=P(x_1>=0,x_2>=0)
(68)
=int_(-infty)^0int_(-infty)^0P(x_1,x_2)dx_1dx_2
(69)
=1/4+(sin^(-1)rho)/(2pi)
(70)

(Rose 和 Smith 1996; Stuart 和 Ord 1998; Rose 和 Smith 2002, p. 231)。类似地,

P(x_1<=0,x_2>=0)=P(x_1>=0,x_2<=0)
(71)
=int_(-infty)^0int_0^inftyP(x_1,x_2)dx_1dx_2
(72)
=(cos^(-1)rho)/(2pi).
(73)

另请参阅

Box-Muller 变换, 二元正态分布的相关系数, 多元正态分布, 正态分布, Price 定理, 三元正态分布

使用 探索

参考文献

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 936-937, 1972.Holst, E. "The Bivariate Normal Distribution." http://www.ami.dk/research/bivariate/.Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, 1951.Kotz, S.; Balakrishnan, N.; and Johnson, N. L. "Bivariate and Trivariate Normal Distributions." Ch. 46 in Continuous Multivariate Distributions, Vol. 1: Models and Applications, 2nd ed. New York: Wiley, pp. 251-348, 2000.Rose, C. and Smith, M. D. "The Multivariate Normal Distribution." Mathematica J. 6, 32-37, 1996.Rose, C. and Smith, M. D. "The Bivariate Normal." §6.4 A in Mathematical Statistics with Mathematica. New York: Springer-Verlag, pp. 216-226, 2002.Spiegel, M. R. Theory and Problems of Probability and Statistics. New York: McGraw-Hill, p. 118, 1992.Stuart, A.; and Ord, J. K. Kendall's Advanced Theory of Statistics, Vol. 1: Distribution Theory, 6th ed. New York: Oxford University Press, 1998.Whittaker, E. T. and Robinson, G. "Determination of the Constants in a Normal Frequency Distribution with Two Variables" and "The Frequencies of the Variables Taken Singly." §161-162 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 324-328, 1967.

在 上被引用

二元正态分布

请引用为

Weisstein, Eric W. “二元正态分布。” 来自 Web 资源。https://mathworld.net.cn/BivariateNormalDistribution.html

学科分类