主题
Search

分数阶微积分


将导数和积分扩展到非整数阶的研究。分数阶微积分基于分数阶积分的定义,如下所示:

 D^(-nu)f(t)=1/(Gamma(nu))int_0^t(t-xi)^(nu-1)f(xi)dxi,

其中 Gamma(nu)伽玛函数。由此方程,也可以定义分数阶导数


另请参阅

导数, 分数阶导数, 分数阶微分方程, 分数阶积分, 分数阶积分方程, 积分, 多重积分, Riemann-Liouville 算子

使用 Wolfram|Alpha 探索

参考文献

Butzer, P. L. and Westphal, U. "An Introduction to Fractional Calculus." 第 1 章,Applications of Fractional Calculus in Physics (R. Hilfer 编). Singapore: World Scientific, 页 1-85, 2000.Kilbas, A. A.; Srivastava, H. M.; and Trujiilo, J. J. Theory and Applications of Fractional Differential Equations. Amsterdam, Netherlands: Elsevier, 2006.McBride, A. C. Fractional Calculus. New York: Halsted Press, 1986.Nishimoto, K. Fractional Calculus. New Haven, CT: University of New Haven Press, 1989.Samko, S. G.; Kilbas, A. A.; and Marichev, O. I. Fractional Integrals and Derivatives. Yverdon, Switzerland: Gordon and Breach, 1993.Oldham, K. B. and Spanier, J. The Fractional Calculus: Integrations and Differentiations of Arbitrary Order. New York: Academic Press, 1974.

在 Wolfram|Alpha 上被引用

分数阶微积分

请引用为

Weisstein, Eric W. "分数阶微积分。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/FractionalCalculus.html

主题分类