杜勒立體,也稱為截角三角偏方面體,是 Albrecht Dürer (The British Museum, Burton 1989, Gellert et al. 1989) 的題為 Melencolia I 的版畫中描繪的 8 面立體,與 杜勒幻方 出現在同一版畫中,該版畫描繪了雜亂無章的科學設備被閒置,而一位知識分子沉浸在思考之中。 儘管杜勒沒有明確說明他的立體是如何構造的,但 Schreiber (1999) 指出,它似乎是由一個扭曲的 立方體 組成,該立方體首先被拉伸以形成菱形面,其角度為 ,然後在頂部和底部截斷,產生邊界三角形面,其頂點位於方位立方體頂點的 外接球 上。
Burton, D. M. Cover illustration of Elementary Number Theory, 4th ed. Boston, MA: Allyn and Bacon, 1989.Federico, P. J. "The Melancholy Octahedron." Math. Mag., pp. 30-36, 1972.Gellert, W.; Gottwald, S.; Hellwich, M.; Kästner, H.; and Künstner, H. (Eds.). Appendix, Plate 19. VNR Concise Encyclopedia of Mathematics, 2nd ed. New York: Van Nostrand Reinhold, 1989.Hart, G. "Durer's Polyhedra." http://www.georgehart.com/virtual-polyhedra/durer.html.Livio, M. The Golden Ratio: The Story of Phi, the World's Most Astonishing Number. New York: Broadway Books, pp. 140-141, 2002.Lynch, T. "The Geometric Body in Durer's Engraving Melencolia I." J. Warburg and Courtauld Inst., 226-232, 1982.MacGillavry, C. H. "The Polyhedron in A. Durer's 'Melencolia I': An Over 450 Years Old Puzzle Solved ?" Nederland Akad. Wetensch. Proc. 1981.Panofsky, E. The Life and Art of Albrecht Durer. Princeton, NJ: Princeton University Press, 1955.Schreiber, P. "A New Hypothesis on Dürer's Enigmatic Polyhedron in His Copper Engraving 'Melencolia I.' " Historia Math.26, 369-377, 1999.Schröder, E. Dürer--Kunst und Geometrie. Berlin: Akademie-Verlag, 1980.Sharp, J. "Durer's Melancholy Octahedron." Math. in School, 18-20, Sept. 1994.Walton, K. D. "Albrecht Durer's Renaissance Connections Between Mathematics and Art." Math. Teacher, 278-282, 1994.