Balaban, A. T. "Trivalent Graphs of Girth Nine and Eleven and Relationships among the Cages." Rev. Roumaine Math. Pures Appl.18, 1033-1043, 1973.Biggs, N. L. Ch. 23 in Algebraic Graph Theory, 2nd ed. Cambridge, England: Cambridge University Press, 1993.Biggs, N. L. "Constructions for Cubic Graphs of Large Girth." LSE Tech Report 97-11.Biggs, N. L. and Hoare, M. J. "A Trivalent Graph with 58 Vertices and Girth 9." Disc. Math.30, 299-301, 1980.Bollobás, B. Extremal Graph Theory. New York: Academic Press, 1978.Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications. New York: North Holland, pp. 236-239, 1976.Brinkmann, G.; McKay, B. D.; and Saager, C. "The Smallest Cubic Graphs of Girth Nine." Combin., Probability, and Computing5, 1-13, 1995.Brouwer, A. E. "Cages." http://www.win.tue.nl/~aeb/graphs/cages/cages.html.Brouwer, A. E.; Cohen, A. M.; and Neumaier, A. "Cages." §6.9 in Distance Regular Graphs. New York: Springer-Verlag, 1989.Erdős, P. and Sachs, H. "Reguläre graphen gegebener Taillenweite mit minimaler Knotenzahl." Wiss. Z. Uni. Halle (Math. Nat.)12, 251-257, 1963.Exoo, G.; McKay, B.; and Myrvold, W. "A (4,7)-Cage." Preprint. March 2007. http://isu.indstate.edu/ge/CAGES/g4.7.67.Exoo, G. and Jajcay, R. "Dynamic Cage Survey." Electr. J. Combin.15, 2008.Gould, R. (Ed.). Graph Theory. Menlo Park, CA: Benjamin-Cummings, 1988.Harary, F. Graph Theory. Reading, MA: Addison-Wesley, pp. 174-175, 1994.Holton, D. A. and Sheehan, J. Ch. 6 in The Petersen Graph. Cambridge, England: Cambridge University Press, 1993.McKay, B. D.; Myrvold, W.; and Nadon, J. "Fast Backtracking Principles Applied to Find New Cages." 9th Annual ACM-SIAM Symposium on Discrete Algorithms, January 1998. pp. 188-191.Meringer, M. "Fast Generation of Regular Graphs and Construction of Cages." J. Graph Th.30, 137-146, 1999.O'Keefe, M. and Wong, P. K. "A Smallest Graph of Girth 10 and Valency 3." J. Combin. Th. B29, 91-105, 1980.Pisanski, T. and Randić, M. "Bridges between Geometry and Graph Theory." In Geometry at Work: Papers in Applied Geometry (Ed. C. A. Gorini). Washington, DC: Math. Assoc. Amer., pp. 174-194, 2000.Polster, B. A Geometrical Picture Book. New York: Springer-Verlag, p. 179, 1998.Read, R. C. and Wilson, R. J. An Atlas of Graphs. Oxford, England: Oxford University Press, pp. 263 and 271-274, 1998.Royle, G. "Cubic Cages." http://school.maths.uwa.edu.au/~gordon/remote/cages/.Royle, G. "Cages of Higher Valency." http://school.maths.uwa.edu.au/~gordon/remote/cages/allcages.html.Sauer, N. "Extremaleigneschaften regulärer Graphen gegebener Taillenweite, I." Österreich. Akad. Wiss. Math. Natur. Kl. S.-B. II176, 9-25, 1967a.Sauer, N. "Extremaleigneschaften regulärer Graphen gegebener Taillenweite, II." Österreich. Akad. Wiss. Math. Natur. Kl. S.-B. II176, 27-43, 1967b.Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 191 and 221, 1990.Sloane, N. J. A. Sequences A000066/M1013, A027383, A037233, and A052453 in "The On-Line Encyclopedia of Integer Sequences."Tutte, W. T. "A Family of Cubical Graphs." Proc. Cambridge Philos. Soc.43, 459-474, 1947.Tutte, W. T. Connectivity in Graphs. Toronto, Canada: Toronto University Press, pp. 70-83, 1967.Wong, P. K. "Cages--A Survey." J. Graph Th.6, 1-22, 1982.