主题
Search

二项式恒等式


Roman (1984, p. 26) 将“二项式恒等式”定义为方程

 p_n(x+y)=sum_(k=0)^n(n; k)p_k(y)p_(n-k)(x).
(1)

当且仅当 序列 p_n(x) 对于 C 中所有的 y 满足此恒等式,且该域的特征为 0,则 p_n(x) 是一个被称为二项式型序列相伴序列

一般来说,二项式恒等式是一个将因子乘积表示为项的和的公式,每个项都包含一个二项式系数 (n; k)。 最典型的例子是二项式定理

 (x+a)^n=sum_(k=0)^n(n; k)x^ka^(n-k)
(2)

对于 n>0。 Abel (1826) 给出了许多这样的恒等式 (Riordan 1979, Roman 1984),其中一些包括

 (x+y)(x+y-an)^(n-1) 
 =sum_(k=0)^n(n; k)xy(x-ak)^(k-1)[y-a(n-k)]^(n-k-1),
(3)
 x^(-1)(x+y-na)^n=sum_(k=0)^n(n; k)(x-ak)^(k-1)[y-a(n-k)]^(n-k)
(4)

(Abel 1826, Riordan 1979, p. 18; Roman 1984, pp. 30 和 73),以及

 x^(-1)(x+y)^n=sum_(k=0)^n(n; k)(x-ak)^(k-1)(y+ak)^(n-k)
(5)

(Saslaw 1989)。


另请参阅

阿贝尔二项式定理, 阿贝尔多项式, 二项式, 二项式系数, Dilcher 公式, q-阿贝尔定理

使用 Wolfram|Alpha 探索

参考文献

Abel, N. H. "Beweis eines Ausdrucks, von welchem die Binomial-Formel ein einzelner Fall ist." J. reine angew. Math. 1, 159-160, 1826. Reprinted in Œuvres Complètes, 2nd ed., Vol. 1. pp. 102-103, 1881.Bhatnagar, G. Inverse Relations, Generalized Bibasic Series, and their U(n) Extensions. Ph.D. thesis. Ohio State University, p. 61, 1995.Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, p. 128, 1974.Ekhad, S. B. 和 Majewicz, J. E. "A Short WZ-Style Proof of Abel's Identity." Electronic J. Combinatorics 3, No. 2, R16, 1, 1996. http://www.combinatorics.org/Volume_3/Abstracts/v3i2r16.html.Foata, D. "Enumerating k-Trees." Discr. Math. 1, 181-186, 1971.Riordan, J. Combinatorial Identities. New York: Wiley, p. 18, 1979.Roman, S. "The Abel Polynomials." §4.1.5 in The Umbral Calculus. New York: Academic Press, pp. 29-30 and 72-75, 1984.Saslaw, W. C. "Some Properties of a Statistical Distribution Function for Galaxy Clustering." Astrophys. J. 341, 588-598, 1989.Strehl, V. "Binomial Sums and Identities." Maple Technical Newsletter 10, 37-49, 1993.Strehl, V. "Binomial Identities--Combinatorial and Algorithmic Aspects." Discrete Math. 136, 309-346, 1994.

在 Wolfram|Alpha 中被引用

二项式恒等式

请引用为

Weisstein, Eric W. “二项式恒等式。” 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/BinomialIdentity.html

主题分类