对于每个 , 2, .... 此结果的一个推论是序列
是 均匀分布的,因此在区间
内是稠密的,对于无理数
,其中
, 2, ... 且
是
的分数部分 (Finch 2003)。
Weyl 判据
另请参阅
均匀分布序列, Erdős-图兰不一致界限, 分数部分, Ramanujan 和, Weyl 和使用 Wolfram|Alpha 探索
参考文献
Bailey, D. H. and Crandall, R. E. "Random Generators and Normal Numbers." Exper. Math. 11, 527-546, 2002.Cassels, J. W. S. An Introduction to Diophantine Analysis. Cambridge, England: Cambridge University Press, 1965.Finch, S. R. "Powers of 3/2 Modulo One." §2.30.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 194-199, 2003.Kuipers, L. and Niederreiter, H. Uniform Distribution of Sequences. New York: Wiley, pp. 7 and 226, 1974.Montgomery, H. L. "Harmonic Analysis as Found in Analytic Number Theory." In Twentieth Century Harmonic Analysis--A Celebration. Proceedings of the NATO Advanced Study Institute Held in Il Ciocco, July 2-15, 2000 (Ed. J. S. Byrnes). Dordrecht, Netherlands: Kluwer, pp. 271-293, 2001.Pólya, G. and Szegö, G. Problems and Theorems in Analysis I. New York: Springer-Verlag, 1972.Radin, C. Miles of Tiles. Providence, RI: Amer. Math. Soc., pp. 79-80, 1999.Vardi, I. Computational Recreations in Mathematica. Redwood City, CA: Addison-Wesley, pp. 155-156 and 254, 1991.Weyl, H. "Über ein Problem aus dem Gebiete der diophantischen Approximationen." Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 234-244, 1914. Reprinted in Gesammelte Abhandlungen, Band I. Berlin: Springer-Verlag, pp. 487-497, 1968.Weyl, H. "Über die Gleichverteilung von Zahlen mod. Eins." Math. Ann. 77, 313-352, 1916. Reprinted in Gesammelte Abhandlungen, Band I. Berlin: Springer-Verlag, pp. 563-599, 1968. Also reprinted in Selecta Hermann Weyl. Basel, Switzerland: Birkhäuser, pp. 111-147, 1956.在 Wolfram|Alpha 中引用
Weyl 判据引用为
Weisstein, Eric W. "Weyl 判据。" 来自 MathWorld-- Wolfram Web 资源。 https://mathworld.net.cn/WeylsCriterion.html