主题
Search

皮克定理


A 为简单闭合 格点多边形面积。设 B 表示 多边形边缘 上的格点 数量,I 表示 多边形 内部的点数。则

 A=I+1/2B-1.

这个公式已经推广到使用Ehrhart 多项式的三维和更高维度。


参见

Blichfeldt 定理, Ehrhart 多项式, 格点, 闵可夫斯基凸体定理

使用 Wolfram|Alpha 探索

参考文献

Borwein, J. 和 Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, p. 17, 2003.Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New York: Wiley, p. 209, 1969.DeTemple, D. "Pick's Formula: A Retrospective." Math. Notes Washington State Univ. 32, Nov. 1989.Diaz, R. 和 Robins, S. "Pick's Formula via the Weierstrass P-Function." Amer. Math. Monthly 102, 431-437, 1995.Ewald, G. Combinatorial Convexity and Algebraic Geometry. New York: Springer-Verlag, 1996.Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, p. 215, 1984.Grünbaum, B. 和 Shephard, G. C. "Pick's Theorem." Amer. Math. Monthly 100, 150-161, 1993.Haigh, G. "A 'Natural' Approach to Pick's Theorem." Math. Gaz. 64, 173-, 1980.Hammer, J. Unsolved Problems Concerning Lattice Points. London: Pitman, 1977.Kelley, D. A. "Areas of Simple Polygons." Pentagon 20, 3-11, 1960.Khan, M. R. "A Counting Formula for Primitive Tetrahedra in Z^3." Amer. Math. Monthly 106, 525-533, 1999.Morelli, R. "Pick's Theorem and the Todd Class of a Toric Variety." Adv. Math. 100, 183-231, 1993.Niven, I. 和 Zuckerman, H. S. "Lattice Points and Polygonal Area." Amer. Math. Monthly 74, 1195, 1967.Olds, C. D.; Lax, A.; 和 Davidoff, G. The Geometry of Numbers. Washington, DC: Math. Assoc. Amer., 2000.Pick, G. "Geometrisches zur Zahlentheorie." Sitzenber. Lotos (Prague) 19, 311-319, 1899.Steinhaus, H. "O polu figur płlaskich." Przeglad Mat.-Fiz., 1924.Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 96-98, 1999.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 183-184, 1991.

在 Wolfram|Alpha 中被引用

皮克定理

请引用本文

Weisstein, Eric W. "皮克定理。" 来自 MathWorld--一个 Wolfram Web 资源。 https://mathworld.net.cn/PicksTheorem.html

主题分类