Gleick, J. 混沌:一门新科学的诞生。 New York: Penguin Books, pp. 27-31, center plate (following p. 114), and p. 140, 1988.Grassberger, P. and Procaccia, I. "测量奇异吸引子的奇异性。" Physica D9, 189-208, 1983.Grossman, B. "洛伦兹吸引子水晶。" http://www.bathsheba.com/crystalsci/lorenz/.Guckenheimer, J. "一个奇异的,奇异的吸引子。" In The Hopf Bifurcation and Its Applications (Ed. J. E. Marsden and M. McCracken). New York: Springer-Verlag, 1976.Guckenheimer, J. and Williams, R. F. "洛伦兹吸引子的结构稳定性。" Publ. Math. IHES50, 307-320, 1979.Lichtenberg, A. and Lieberman, M. 规则和随机运动。 New York: Springer-Verlag, 1983.Lorenz, E. N. "确定性非周期流动。" J. Atmos. Sci.20, 130-141, 1963.Lorenz, E. N. "关于简单系统中非周期性的普遍性。" In Global Analysis: Proceedings of the Biennial Seminar of the Canadian Mathematical Congress Held at the University of Calgary, Alberta, June 12-27 (Ed. M. Grmela and J. E. Marsden). New York: Springer-Verlag, pp. 53-75, 1979.Peitgen, H.-O.; Jürgens, H.; and Saupe, D. 混沌与分形:科学的新领域。 New York: Springer-Verlag, pp. 697-708, 1992.Rand, D. "洛伦兹吸引子的拓扑分类。" Math. Proc. Cambridge Philos. Soc.83, 451-460, 1978.Smale, S. "下个世纪的数学问题。" Math. Intelligencer20, No. 2, 7-15, 1998.Smale, S. "下个世纪的数学问题。" In Mathematics: Frontiers and Perspectives 2000 (Ed. V. Arnold, M. Atiyah, P. Lax, and B. Mazur). Providence, RI: Amer. Math. Soc., 2000.Sparrow, C. 洛伦兹方程:分岔,混沌和奇异吸引子。 New York: Springer-Verlag, 1982.Stewart, I. "洛伦兹吸引子存在。" Nature406, 948-949, 2000.Tabor, M. 非线性动力学中的混沌与可积性:导论。 New York: Wiley, 1989.Tucker, W. "一个严格的 ODE 求解器和斯梅尔的第 14 个问题。" Found. Comput. Math.2, 53-117, 2002.Viana, M. "关于洛伦兹奇异吸引子的新进展。" Math. Intell.22, 6-19.Weisstein, E. W. "斯梅尔的第 14 个问题已解决。" MathWorld Headline News, Feb. 13, 2002. https://mathworld.net.cn/news/2002-02-13/smale14th/.Wells, D. 企鹅好奇和有趣的几何词典。 London: Penguin, pp. 142-143, 1991.Williams, R. F. "洛伦兹吸引子的结构。" Publ. Math. IHES50, 321-347, 1979.Yorke, J. A. and Yorke, E. D. "亚稳态混沌:洛伦兹模型中向持续混沌振荡的过渡。" J. Stat. Phys.21, 263-277, 1979.