区间算术是对位于指定范围(即区间)内的量进行运算的一种算术,而不是对具有确定已知值的量进行运算。当处理受测量误差或不确定性影响的数据时,区间算术可能特别有用。它可以被认为是有效数字算术(又名自动精度控制)的严格版本。
它功能强大,足以提供严格的数学证明(de la Llave 1991, Hutchings et al. 2000, Tucker 2002, Gutowski 2003),但严谨性是有代价的。特别是,区间算术可能很慢,并且在实际计算中常常给出过于悲观的结果。
另请参阅
浮点算术,
区间,
射影扩展实数
使用 探索
参考文献
de la Llave, R. In Computer Aided Proofs in Analysis (Ed. K. Meyer and D. Schmidt). New York: Springer-Verlag, 1991.Marlov, S. M. In Scientific Computing and Validated Numerics (Ed. G. Alefeld; A. Frommer, and B. Lang). Berlin: Akademie Verlag, 1996.Gutowski, M. W. "Power and Beauty of Interval Methods." 20 Feb 2003. http://arxiv.org/abs/physics/0302034.Hutchings, M.; Morgan, F.; Ritoré; M.; and Ros, A. Electron. Res. Announc. Amer. Math. Soc. 6, 45, 2000.Jaulin, L.; Kieffer, M.; Didrit, O.; and Walter, É. Applied Interval Analysis. London: Springer-Verlag, 2003.Kearfott, B. R. Euromath Bull. 2, 95, 1996.Petkovič M. S.; and Petkovič, L. D. Complex Interval Arithmetic and Its Applications. Berlin: Wiley, 1998.Popova, E. D. and Ullrich, C. P. "Simplication of Symbolic-Numerical Interval Expressions." In Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation (Ed. O. Gloor). New York: ACM Press, pp. 207-214, 1998.Schenkel, A.; Wehr, J.; and Wittwer, P. Math. Phys. Electr. J. 6, 2000.Shokin, Y. I. In Scientific Computing and Validated Numerics (Ed. G. Alefeld; A. Frommer, and B. Lang). Berlin: Akademie Verlag, 1996.Trott, M. "Interval Arithmetic." §1.1.2 in The Mathematica GuideBook for Numerics. New York: Springer-Verlag, pp. 54-66, 2006. http://www.mathematicaguidebooks.org/.Tucker, W. Found. Comput. Math. 2, 53, 2002.Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, p. 1168, 2002.在 中被引用
区间算术
引用为
Weisstein, Eric W. "区间算术。" 来自 Web 资源。 https://mathworld.net.cn/IntervalArithmetic.html
主题分类