主题
Search

朗道-柯尔莫哥洛夫常数


||f|||f(x)|上确界,一个定义在 (0,infty) 上的实值函数 f。如果 f 是二次可微的且 ff^('') 都有界,Landau (1913) 证明了

 ||f^'||<=2||f||^(1/2)||f^('')||^(1/2),
(1)

其中常数 2 是最佳可能的。Schoenberg (1973) 将结果推广到定义在 (0,infty) 上的 fn 阶导数,如果 ff^((n)) 都有界,

 ||f^((k))||<=C(n,k)||f||^(1-k/n)||f^((n))||^(k/n).
(2)

对于 C(n,k) 的显式 公式 尚不清楚,但特殊情况如下

C(3,1)=((243)/8)^(1/3)
(3)
C(3,2)=24^(1/3)
(4)
C(4,1)=4.288...
(5)
C(4,2)=5.750...
(6)
C(4,3)=3.708....
(7)

||f|||f(x)|上确界,一个定义在 (-infty,infty) 上的实值函数 f。如果 f 是二次可微的且 ff^('') 都有界,Hadamard (1914) 证明了

 ||f^'||<=sqrt(2)||f||^(1/2)||f^('')||^(1/2),
(8)

其中常数 sqrt(2) 是最佳可能的。Kolmogorov (1962) 确定了 C(n,k) 的最佳常数,用于

 ||f^((k))||<=C(n,k)||f||^(1-k/n)||f^((n))||^(k/n)
(9)

Favard 常数表示

 a_n=4/pisum_(j=0)^infty[((-1)^j)/(2j+1)]^(n+1)
(10)

通过

 C(n,k)=a_(n-k)a_n^(-1+k/n).
(11)

由 Shilov (1937) 推导出的特殊情况如下

C(3,1)=(9/8)^(1/3)
(12)
C(3,2)=3^(1/3)
(13)
C(4,1)=((512)/(375))^(1/4)
(14)
C(4,2)=sqrt(6/5)
(15)
C(4,3)=((24)/5)^(1/4)
(16)
C(5,1)=((1953125)/(1572864))^(1/5)
(17)
C(5,2)=((125)/(72))^(1/5).
(18)

对于定义在 (-infty,infty) 上的实值函数 f,定义

 ||f||=sqrt(int_(-infty)^infty[f(x)]^2dx).
(19)

如果 fn 阶可微的且 ff^((n)) 都有界,Hardyet al. (1934) 证明了

 ||f^((k))||<=||f||^(1-k/n)||f^((n))||^(k/n),
(20)

其中常数 1 对于所有 n0<k<n 都是最佳可能的。

对于定义在 (0,infty) 上的实值函数 f,定义

 ||f||=sqrt(int_0^infty[f(x)]^2dx).
(21)

如果 f 是二次可微的且 ff^('') 都有界,Hardyet al. (1934) 证明了

 ||f^'||<=sqrt(2)||f||^(1/2)||f^((n))||^(1/2),
(22)

其中常数 sqrt(2) 是最佳可能的。此不等式被 Ljubic (1964) 和 Kupcov (1975) 推广到

 ||f^((k))||<=C(n,k)||f||^(1-k/n)||f^((n))||^(k/n)
(23)

其中 C(n,k)多项式的零点表示。特殊情况如下

C(3,1)=C(3,2)=3^(1/2)[2(2^(1/2)-1)]^(-1/3)
(24)
=1.84420...
(25)
C(4,1)=C(4,3)=sqrt((3^(1/4)+3^(-3/4))/a)
(26)
=2.27432...
(27)
C(4,2)=sqrt(2/b)=2.97963...
(28)
C(4,3)=((24)/5)^(1/4)
(29)
C(5,1)=C(5,4)=2.70247...
(30)
C(5,2)=C(5,3)=4.37800...,
(31)

其中 a

 x^8-6x^4-8x^2+1=0
(32)

的最小,且 b

 x^4-2x^2-4x+1=0
(33)

(Franco et al. 1985, Neta 1980) 的最小。常数 C(n,1) 由下式给出

 C(n,1)=sqrt(((n-1)^(1/n)+(n+1)^(-1+1/n))/c),
(34)

其中 c

 int_0^cint_0^infty(dxdy)/((x^(2n)-yx^2+1)sqrt(y))=(pi^2)/(2n).
(35)

的最小。对于 k>1,这种类型的显式 公式 尚不清楚。

p=1、2、infty 这些情况是唯一能得到最佳常数精确表达式的情况 (Kwong and Zettl 1992, Franco et al. 1983)。


另请参阅

朗道常数, 朗道-拉马努金常数

使用 探索

参考资料

Finch, S. R. "Landau-Kolmogorov Constants." §3.3 in Mathematical Constants (数学常数). 英国剑桥: 剑桥大学出版社, pp. 212-216, 2003.Franco, Z. M.; Kaper, H. G.; Kwong, M. N.; and Zettl, A. "Bounds for the Best Constants in Landau's Inequality on the Line." Proc. Roy. Soc. Edinburgh 95A, 257-262, 1983.Franco, Z. M.; Kaper, H. G.; Kwong, M. N.; and Zettl, A. "Best Constants in Norm Inequalities for Derivatives on a Half Line." Proc. Roy. Soc. Edinburgh 100A, 67-84, 1985.Hadamard, J. "Sur le module maximum d'une fonction et de ses dérivés." Comptes Rendus Acad. Sci. Paris 41, 68-72, 1914.Hardy, G. H.; Littlewood, J. E.; and Pólya, G. Inequalities (不等式). 英国剑桥: 剑桥大学出版社, 1934.Kolmogorov, A. "On Inequalities Between the Upper Bounds of the Successive Derivatives of an Arbitrary Function on an Infinite Integral." Amer. Math. Soc. Translations, Ser. 1 2, 233-243, 1962.Kupcov, N. P. "Kolmogorov Estimates for Derivatives in L_2(0,infty)." Proc. Steklov Inst. Math. 138, 101-125, 1975.Kwong, M. K. and Zettl, A. Norm Inequalities for Derivatives and Differences (关于导数和差分的范数不等式). 纽约: 施普林格出版社, 1992.Landau, E. "Einige Ungleichungen für zweimal differentzierbare Funktionen." Proc. London Math. Soc. Ser. 2 13, 43-49, 1913.Landau, E. "Die Ungleichungen für zweimal differentzierbare Funktionen." Danske Vid. Selsk. Math. Fys. Medd. 6, 1-49, 1925.Ljubic, J. I. "On Inequalities Between the Powers of a Linear Operator." Amer. Math. Soc. Trans. Ser. 2 40, 39-84, 1964.Neta, B. "On Determinations of Best Possible Constants in Integral Inequalities Involving Derivatives." Math. Comput. 35, 1191-1193, 1980.Schoenberg, I. J. "The Elementary Case of Landau's Problem of Inequalities Between Derivatives." Amer. Math. Monthly 80, 121-158, 1973.Shilov, G. E. "On Inequalities Between Derivatives." Sbornik Rabot Studencheskikh Nauchnykh Kruzhov Moskovskogo Gosudarstvennogo Universiteta, 17-27, 1937.

在 中被引用

朗道-柯尔莫哥洛夫常数

引用为

Weisstein, Eric W. "Landau-Kolmogorov Constants." 来自 —— Wolfram 网络资源。 https://mathworld.net.cn/Landau-KolmogorovConstants.html

主题分类