主题
Search

亥姆霍兹微分方程——抛物柱坐标系


抛物柱坐标系中,尺度因子h_u=h_v=sqrt(u^2+v^2), h_z=1 分离函数是 f_1(u)=f_2(v)=f_3(z)=1, 给出 Stäckel 行列式 s=u^2+v^2亥姆霍兹微分方程

 1/(u^2+v^2)((partial^2f)/(partialu^2)+(partial^2f)/(partialv^2))+(partial^2f)/(partialz^2)+k^2f=0.
(1)

尝试分离变量法,通过写成

 f(u,v,z)=u(u)v(v)z(z),
(2)

那么亥姆霍兹微分方程变为

 1/(u^2+v^2)(VZ(d^2U)/(du^2)+UZ(d^2V)/(dv^2))+UV(d^2Z)/(dz^2)+k^2UVZ=0.
(3)

除以 UVZ

 1/(u^2+v^2)(1/U(d^2U)/(du^2)+1/V(d^2V)/(dv^2))+1/Z(d^2Z)/(dz^2)+k^2=0.
(4)

分离 Z 部分,

 1/Z(d^2Z)/(dz^2)=-(k^2+m^2)
(5)
 1/(u^2+v^2)(1/U(d^2U)/(du^2)+1/V(d^2V)/(dv^2))-k^2=0
(6)
 1/U(d^2U)/(du^2)+1/V(d^2V)/(dv^2)-k^2(u^2+v^2)=0,
(7)

因此

 (d^2Z)/(dz^2)=-(k^2+m^2)Z,
(8)

其解为

 Z(z)=Acos(sqrt(k^2+m^2)z)+Bsin(sqrt(k^2+m^2)z),
(9)

 (1/U(d^2U)/(du^2)-k^2u^2)+(1/V(d^2V)/(dv^2)-k^2v^2)=0.
(10)

这可以被分离

1/U(d^2U)/(du^2)-k^2u^2=c
(11)
1/V(d^2V)/(dv^2)-k^2v^2=-c,
(12)

因此

 (d^2U)/(du^2)-(c+k^2u^2)U=0
(13)
 (d^2V)/(dv^2)+(c-k^2v^2)V=0.
(14)

这些是韦伯微分方程,其解被称为抛物柱面函数


另请参阅

亥姆霍兹微分方程, 抛物柱面函数, 抛物柱坐标系, 韦伯微分方程

使用 Wolfram|Alpha 探索

参考文献

Moon, P. and Spencer, D. E. Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions, 2nd ed. New York: Springer-Verlag, p. 36, 1988.Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 515 and 658, 1953.

引用为

Weisstein, Eric W. “亥姆霍兹微分方程——抛物柱坐标系。” 来自 MathWorld——Wolfram Web 资源。 https://mathworld.net.cn/HelmholtzDifferentialEquationParabolicCylindricalCoordinates.html

主题分类