主题
Search

巴奈特猜想


巴奈特猜想断言,每个 3-连通的二部三次平面图都是哈密顿图。 满足巴奈特条件的顶点数不超过九的唯一图是立方体图,它确实是哈密顿图截角八面体大斜方立方八面体大斜方二十面体的骨架也满足这些条件,并且由于它们是阿基米德立体,因此确实是哈密顿图。 Holton等人 (1985) 证明了所有顶点数少于 66 的图都满足这个猜想,但一般猜想仍然是开放的。

类似地,巴奈特猜想所有面大小至多为 6 的三次、3-连通平面图都是哈密顿图。 Aldred等人 (2000) 已经验证了所有顶点数少于 177 的图的这个猜想。


另请参阅

二部图, 三次图, 哈密顿图

使用 探索

参考文献

Aldred, R.; Bau, S.; Holton, D., and McKay, B. "Nonhamiltonian 3-Connected Cubic Planar Graphs." SIAM J. Disc. Math. 13, 25-32, 2000.Barnette, D. Conjecture 5 in Recent Progress in Combinatorics: Proceedings of the Third Waterloo Conference on Combinatorics, May 1968 (Ed. W. T. Tutte). New York: Academic Press, 1969.Holton, D.; Manvel, B.; and McKay, B. "Hamiltonian Cycles in Cubic 3-Connected Bipartite Planar Graphs." J. Combin. Th. Ser. B 38, 279-297, 1985.Owens, P. J. "Bipartite Cubic Graphs and a Shortness Exponent." Disc. Math. 44, 327-330, 1983.

引用为

Weisstein, Eric W. “巴奈特猜想。” 来自 ——Wolfram 网络资源。 https://mathworld.net.cn/BarnettesConjecture.html

主题分类