是 整数
的数量,对于这些整数,欧拉函数
,也称为
的重数 (Guy 1994)。 Erdős (1958) 证明,如果一个重数出现一次,它就会无限次出现。
对于
, 2, ... 的值是 2, 3, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, ... (OEIS A014197),非零值是 2, 3, 4, 4, 5, 2, 6, 6, 4, 5, 2, 10, 2, 2, 7, 8, 9, ... (OEIS A058277),这些值出现在
, 2, 4, 6, 8, 10, 12, 16, 18, 20, ... (OEIS A002202) 时。下表列出了
的值。
1 | 2 | 1, 2 |
2 | 3 | 3, 4, 6 |
4 | 4 | 5, 8, 10, 12 |
6 | 4 | 7, 9, 14, 18 |
8 | 5 | 15, 16, 20, 24, 30 |
10 | 2 | 11, 22 |
12 | 6 | 13, 21, 26, 28, 36, 42 |
16 | 6 | 17, 32, 34, 40, 48, 60 |
18 | 4 | 19, 27, 38, 54 |
20 | 5 | 25, 33, 44, 50, 66 |
22 | 2 | 23, 46 |
24 | 10 | 35, 39, 45, 52, 56, 70, 72, 78, 84, 90 |
28 | 2 | 29, 58 |
30 | 2 | 31, 62 |
32 | 7 | 51, 64, 68, 80, 96, 102, 120 |
36 | 8 | 37, 57, 63, 74, 76, 108, 114, 126 |
40 | 9 | 41, 55, 75, 82, 88, 100, 110, 132, 150 |
42 | 4 | 43, 49, 86, 98 |
44 | 3 | 69, 92, 138 |
46 | 2 | 47, 94 |
48 | 11 | 65, 104, 105, 112, 130, 140, 144, 156, 168, 180, 210 |
最小的 使得
恰好有 2, 3, 4, ... 个解,由 1, 2, 4, 8, 12, 32, 36, 40, 24, ... (OEIS A007374) 给出。包括 Carmichael 猜想,即
无解,最小的
使得
恰好有 0, 1, 2, 3, 4, ... 个解,由 3, 0, 1, 2, 4, 8, 12, 32, 36, 40, 24, ... (OEIS A014573) 给出。下表列出了
的第一个值,其重数高达 100。
0 | 3 | 26 | 2560 | 51 | 4992 | 76 | 21840 |
2 | 1 | 27 | 384 | 52 | 17640 | 77 | 9072 |
3 | 2 | 28 | 288 | 53 | 2016 | 78 | 38640 |
4 | 4 | 29 | 1320 | 54 | 1152 | 79 | 9360 |
5 | 8 | 30 | 3696 | 55 | 6000 | 80 | 81216 |
6 | 12 | 31 | 240 | 56 | 12288 | 81 | 4032 |
7 | 32 | 32 | 768 | 57 | 4752 | 82 | 5280 |
8 | 36 | 33 | 9000 | 58 | 2688 | 83 | 4800 |
9 | 40 | 34 | 432 | 59 | 3024 | 84 | 4608 |
10 | 24 | 35 | 7128 | 60 | 13680 | 85 | 16896 |
11 | 48 | 36 | 4200 | 61 | 9984 | 86 | 3456 |
12 | 160 | 37 | 480 | 62 | 1728 | 87 | 3840 |
13 | 396 | 38 | 576 | 63 | 1920 | 88 | 10800 |
14 | 2268 | 39 | 1296 | 64 | 2400 | 89 | 9504 |
15 | 704 | 40 | 1200 | 65 | 7560 | 90 | 18000 |
16 | 312 | 41 | 15936 | 66 | 2304 | 91 | 23520 |
17 | 72 | 42 | 3312 | 67 | 22848 | 92 | 39936 |
18 | 336 | 43 | 3072 | 68 | 8400 | 93 | 5040 |
19 | 216 | 44 | 3240 | 69 | 29160 | 94 | 26208 |
20 | 936 | 45 | 864 | 70 | 5376 | 95 | 27360 |
21 | 144 | 46 | 3120 | 71 | 3360 | 96 | 6480 |
22 | 624 | 47 | 7344 | 72 | 1440 | 97 | 9216 |
23 | 1056 | 48 | 3888 | 73 | 13248 | 98 | 2880 |
24 | 1760 | 49 | 720 | 74 | 11040 | 99 | 26496 |
25 | 360 | 50 | 1680 | 75 | 27720 | 100 | 34272 |
人们认为 (即,欧拉示性数价函数永远不会取值 1),但这一点尚未得到证明。这个论断被称为 卡迈克尔欧拉函数猜想,等价于对于所有
,都存在
使得
(Ribenboim 1996, pp. 39-40)。任何反例必须有超过
位 数字 (Schlafly and Wagon 1994;在 Conway 和 Guy 1996 年的书中错误地给出为
)。