菜单图标 主题
Search

Smarandache-Kurepa 函数


给定左阶乘函数

 Sigma(n)=sum_(k=1)^nk!,

SK(p) 对于 p 素数是使得 n 成立的最小整数 p|1+Sigma(n-1)。前几个已知的 SK(p) 的值为 2, 4, 6, 6, 5, 7, 7, 12, 22, 16, 55, 54, 42, 24, ... 对于 p=2, 5, 7, 11, 17, 19, 23, 31, 37, 41, 61, 71, 73, 89, .... 函数 SK(p) 对于 p=3, 13, 29, 43, 47, 53, 67, 79, 83, ... 不存在。


另请参阅

左阶乘, 伪 Smarandache 函数, Smarandache 上取整函数, Smarandache 函数, Smarandache-Wagstaff 函数

使用 探索

参考文献

Ashbacher, C. "Smarandache-Kurepa 和 Smarandache-Wagstaff 函数的一些性质。" 数学信息学季刊 7, 114-116, 1997.Mudge, M. "介绍 Smarandache-Kurepa 和 Smarandache-Wagstaff 函数。" Smarandache 概念杂志 7, 52-53, 1996.Mudge, M. "介绍 Smarandache-Kurepa 和 Smarandache-Wagstaff 函数。" 提交给美国数学学会的论文摘要 17, 583, 1996.

在 中被引用

Smarandache-Kurepa 函数

请引用为

Weisstein, Eric W. "Smarandache-Kurepa 函数。" 来自 Web 资源。 https://mathworld.net.cn/Smarandache-KurepaFunction.html

主题分类