每个非常数整函数都取遍每一个复数值,至多有一个例外(Henrici 1988, p. 216; Apostol 1997)。此外,每个解析函数在任何邻域的本性奇点的邻域内,都无穷多次地取遍每一个复数值,可能有一个例外。
皮卡大定理
参见
解析函数, 本性奇点, 邻域, 皮卡存在性定理, 皮卡小定理使用 Wolfram|Alpha 探索
参考文献
Apostol, T. M. "Application to Picard's Theorem." §2.9 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 43-44, 1997.Bronshtein, I. N. and Semendyayev, K. A. Handbook of Mathematics, 3rd ed. New York: Springer-Verlag, 1997.Henrici, P. Applied and Computational Complex Analysis, Vol. 1: Power Series-Integration-Conformal Mapping-Location of Zeros. New York: Wiley, 1988.Korn, G. A. and Korn, T. M. Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill, 1968.Krantz, S. G. "Picard's Great Theorem." §10.5.3 in Handbook of Complex Variables. Boston, MA: Birkhäuser, p. 140, 1999.Narasimhan, R. and Nievergelt, Y. Complex Analysis in One Variable. Boston: Birkhäuser, 2001.Remmert, R. Funktionentheorie 1. Berlin: Springer-Verlag, 1992.Remmert, R. Funktionentheorie 2. Berlin: Springer-Verlag, 1992.Trott, M. "Elementary Transcendental Functions." The Mathematica GuideBook for Programming. New York: Springer-Verlag, p. 166, 2004. http://www.mathematicaguidebooks.org/.在 Wolfram|Alpha 上引用
皮卡大定理请引用为
Weisstein, Eric W. "皮卡大定理。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/PicardsGreatTheorem.html