主题
Search

拉普拉斯方程--圆锥坐标


圆锥坐标中,拉普拉斯方程可以写成

 (partial^2V)/(partialalpha^2)+(partial^2V)/(partialbeta^2)+(mu^2-nu^2)partial/(partiallambda)(lambda^2(partialV)/(partiallambda))=0,
(1)

其中

alpha=int_a^mu(dmu)/(sqrt((mu^2-a^2)(b^2-mu^2)))
(2)
beta=int_0^nu(dnu)/(sqrt((a^2-nu^2)(b^2-nu^2)))
(3)

(Byerly 1959)。令

 V=U(u)R(r)
(4)

将 (1) 分解为以下两个方程,

 d/(dr)(r^2(dR)/(dr))=m(m+1)R
(5)
 (partial^2U)/(partialalpha^2)+(partial^2U)/(partialbeta^2)+m(m+1)(mu^2-nu^2)U=0.
(6)

解这些方程得到

 R(r)=Ar^m+Br^(-m-1)
(7)
 U(u)=E_m^p(mu)E_m^p(nu),
(8)

其中 E_m^p第一类椭球谐波。因此,正则解是

 V=Ar^mE_m^p(mu)E_m^p(nu).
(9)

然而,由于圆柱对称性,解 E_m^p(mu)E_m^p(nu) 是一个 m球谐函数


参见

圆锥坐标亥姆霍兹微分方程

使用 Wolfram|Alpha 探索

参考文献

Arfken, G. "圆锥坐标 (xi_1,xi_2,xi_3)." §2.16 in Mathematical Methods for Physicists, 2nd ed. Orlando, FL: Academic Press, pp. 118-119, 1970.Byerly, W. E. An Elementary Treatise on Fourier's Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. New York: Dover, p. 263, 1959.Moon, P. and Spencer, D. E. Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions, 2nd ed. New York: Springer-Verlag, pp. 39-40, 1988.Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 514 and 659, 1953.

请引用为

Weisstein, Eric W. "拉普拉斯方程--圆锥坐标。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/LaplaceEquationConicalCoordinates.html

学科分类