主题
Search

四色定理


四色定理指出,平面上的任何地图都可以用四种颜色着色,使得共享共同边界(除了单个点)的区域不共享相同的颜色。这个问题有时也称为格思里问题,以纪念 F. 格思里,他于 1852 年首次猜想了这个定理。这个猜想随后被传达给了德·摩根,然后传到了更广泛的社群。1878 年,凯莱写了第一篇关于这个猜想的论文。

肯佩(1879 年)和泰特(1880 年)分别给出了错误的证明。肯佩的证明被接受了十年,直到希伍德用一个有 18 个面的地图(尽管一个有 9 个面的地图就足以显示这个谬误)证明了其中的错误。希伍德猜想为地图着色提供了一个非常普遍的断言,表明在亏格为 0 的空间(包括球面或平面)中,四种颜色就足够了。林格尔和扬斯(1968 年)证明,对于亏格 g>0,希伍德猜想提供的上限也给出了必要的颜色数,但克莱因瓶(希伍德公式给出 7,但正确的界限是 6)除外。

可以证明六种颜色足以应对 g=0 的情况,并且这个数字很容易减少到五种,但是将颜色数量一直减少到四种被证明非常困难。阿佩尔和哈肯(1977 年)最终获得了这个结果,他们构建了一个计算机辅助证明,证明四种颜色就足够了。然而,由于部分证明包括计算机对许多离散情况的详尽分析,一些数学家不接受它。但是,尚未发现任何缺陷,因此该证明看起来有效。罗伯逊等人。(1996 年;托马斯 1998 年)构建了一个更短、独立的证明。

2004 年 12 月,英国剑桥微软研究院的 G. Gonthier(与法国 INRIA 的 B. Werner 合作)宣布,他们通过在等式逻辑程序 Coq 中公式化问题并确认其每个步骤的有效性,验证了 Robertson 等人的证明(Devlin 2005,Knight 2005)。

J. Ferro(私人通讯,2005 年 11 月 8 日)揭穿了许多所谓的四色定理“简短”证明。

马丁·加德纳(Martin Gardner,1975 年)开了一个愚人节玩笑,声称由 110 个区域组成的麦格雷戈地图需要五种颜色,并且构成了四色定理的反例。


另请参阅

色数, 埃雷拉图, 弗里奇图, 图着色, 哈德维格猜想, 哈德维格-纳尔逊问题, 希伍德猜想, 肯佩链, 基特尔图, 地图着色, 麦格雷戈地图, 六色定理, 索伊费尔图, 环面着色

使用 Wolfram|Alpha 探索

参考文献

Appel, K. and Haken, W. "Every Planar Map is Four-Colorable, II: Reducibility." Illinois J. Math. 21, 491-567, 1977.Appel, K. and Haken, W. "The Solution of the Four-Color Map Problem." Sci. Amer. 237, 108-121, 1977.Appel, K. and Haken, W. "The Four Color Proof Suffices." Math. Intell. 8, 10-20 and 58, 1986.Appel, K. and Haken, W. Every Planar Map is Four-Colorable. Providence, RI: Amer. Math. Soc., 1989.Appel, K.; Haken, W.; and Koch, J. "Every Planar Map is Four Colorable. I: Discharging." Illinois J. Math. 21, 429-490, 1977.Barnette, D. Map Coloring, Polyhedra, and the Four-Color Problem. Providence, RI: Math. Assoc. Amer., 1983.Birkhoff, G. D. "The Reducibility of Maps." Amer. Math. J. 35, 114-128, 1913.Chartrand, G. "The Four Color Problem." §9.3 in Introductory Graph Theory. New York: Dover, pp. 209-215, 1985.Coxeter, H. S. M. "The Four-Color Map Problem, 1840-1890." Math. Teach. 52, 283-289, 1959.Devlin, K. "Devlin's Angle: Last Doubts Removed About the Proof of the Four Color Theorem." Jan. 2005.Errera, A. Du colorage de cartes et de quelques questions d'analysis situs. Ph.D. thesis. Paris: Gauthier-Villars, 1921.Franklin, P. "Note on the Four Color Problem." J. Math. Phys. 16, 172-184, 1937-1938.Franklin, P. The Four-Color Problem. New York: Scripta Mathematica, Yeshiva College, 1941.Gardner, M. "Mathematical Games: The Celebrated Four-Color Map Problem of Topology." Sci. Amer. 203, 218-222, Sep. 1960.Gardner, M. "Mathematical Games: Martin Gardner's New Mathematical Diversions from Scientific American." Sci. Amer. 232, 127-132, Apr. 1975.Gardner, M. "Mathematical Games: Six Sensational Discoveries that Somehow or Another have Escaped Public Attention." Sci. Amer. 232, 127-132, Apr. 1975.Gardner, M. "Mathematical Games: On Tessellating the Plane with Convex Polygons." Sci. Amer. 232, 112-117, Jul. 1975.Gardner, M. The Last Recreations: Hydras, Eggs, and Other Mathematical Mystifications. New York: Springer-Verlag, p. 86, 1997.Gethner, E. and Springer, W. M. II. "How False Is Kempe's Proof of the Four-Color Theorem?" Congr. Numer. 164, 159-175, 2003.Harary, F. "The Four Color Conjecture." Graph Theory. Reading, MA: Addison-Wesley, p. 5, 1994.Heawood, P. J. "Map Colour Theorems." Quart. J. Math. 24, 332-338, 1890.Heawood, P. J. "On the Four-Color Map Theorem." Quart. J. Pure Math. 29, 270-285, 1898.Hutchinson, J. P. and Wagon, S. "Kempe Revisited." Amer. Math. Monthly 105, 170-174, 1998.Kempe, A. B. "On the Geographical Problem of Four-Colors." Amer. J. Math. 2, 193-200, 1879.Kittell, I. "A Group of Operations on a Partially Colored Map." Bull. Amer. Math. Soc. 41, 407-413, 1935.Knight, W. "Computer Generates Verifiable Mathematics Proof." New Scientist Breaking News. Apr. 19, 2005.Kraitchik, M. §8.4.2 in Mathematical Recreations. New York: W. W. Norton, p. 211, 1942.May, K. O. "The Origin of the Four-Color Conjecture." Isis 56, 346-348, 1965.Morgenstern, C. and Shapiro, H. "Heuristics for Rapidly 4-Coloring Large Planar Graphs." Algorithmica 6, 869-891, 1991.Ore, Ø. The Four-Color Problem. New York: Academic Press, 1967.Ore, Ø. and Stemple, G. J. "Numerical Methods in the Four Color Problem." Recent Progress in Combinatorics (Ed. W. T. Tutte). New York: Academic Press, 1969.Pappas, T. "The Four-Color Map Problem: Topology Turns the Tables on Map Coloring." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 152-153, 1989.Ringel, G. and Youngs, J. W. T. "Solution of the Heawood Map-Coloring Problem." Proc. Nat. Acad. Sci. USA 60, 438-445, 1968.Robertson, N.; Sanders, D. P.; Seymour, P. D.; and Thomas, R. "A New Proof of the Four Colour Theorem." Electron. Res. Announc. Amer. Math. Soc. 2, 17-25, 1996.Robertson, N.; Sanders, D. P.; and Thomas, R. "The Four-Color Theorem." http://www.math.gatech.edu/~thomas/FC/fourcolor.html.Saaty, T. L. and Kainen, P. C. The Four-Color Problem: Assaults and Conquest. New York: Dover, 1986.Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 210, 1990.Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 274-275, 1999.Tait, P. G. "Note on a Theorem in Geometry of Position." Trans. Roy. Soc. Edinburgh 29, 657-660, 1880.Thomas, R. "An Update on the Four-Color Theorem." Not. Amer. Math. Soc. 45, 858-857, 1998.Weisstein, E. W. "Books about Four-Color Problem." http://www.ericweisstein.com/encyclopedias/books/Four-ColorProblem.html.Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 57, 1986.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 81-82, 1991.Wilson, R. Four Colors Suffice : How the Map Problem Was Solved. Princeton, NJ: Princeton University Press, 2004.

请引用为

韦斯坦, 埃里克·W. "四色定理。" 来自 MathWorld--Wolfram 网络资源。 https://mathworld.net.cn/Four-ColorTheorem.html

主题分类