主题
Search

基础公理


策梅洛-弗兰克尔公理 之一,也称为正则公理(Rubin 1967, Suppes 1972)。在 集合论 的形式语言中,它声明:

 x!=emptyset=> exists  y(y in x ^ y intersection x=emptyset),

其中 => 表示 蕴含 exists 表示 存在 ^ 表示  intersection 表示 交集,并且 emptyset空集 (Mendelson 1997, p. 288)。更具描述性地,“每个非空集合都与其某个元素不相交。”

基础公理也可以表述为“一个集合不包含无限递降(隶属关系)序列”,或“一个集合包含一个(隶属关系)最小元素”,即,集合中存在一个元素,该元素与该集合不共享任何成员(Ciesielski 1997, p. 37; Moore 1982, p. 269; Rubin 1967, p. 81; Suppes 1972, p. 53)。

Mendelson(1958)证明,这两个陈述的等价性必然依赖于选择公理。对偶表达式称为 epsilon-归纳法,并且与公理本身等价(Itô 1986, p. 147)。


另请参阅

选择公理, 策梅洛-弗兰克尔公理

使用 Wolfram|Alpha 探索

参考文献

Ciesielski, K. Set Theory for the Working Mathematician. Cambridge, England: Cambridge University Press, 1997.Dauben, J. W. Georg Cantor: His Mathematics and Philosophy of the Infinite. Princeton, NJ: Princeton University Press, 1990.Itô, K. (Ed.). "Zermelo-Fraenkel Set Theory." §33B in Encyclopedic Dictionary of Mathematics, 2nd ed., Vol. 1. Cambridge, MA: MIT Press, pp. 146-148, 1986.Mendelson, E. "The Axiom of Fundierung and the Axiom of Choice." Archiv für math. Logik und Grundlagenfors. 4, 67-70, 1958.Mendelson, E. Introduction to Mathematical Logic, 4th ed. London: Chapman & Hall, 1997.Mirimanoff, D. "Les antinomies de Russell et de Burali-Forti et le problème fondamental de la théorie des ensembles." Enseign. math. 19, 37-52, 1917.Moore, G. H. Zermelo's Axiom of Choice: Its Origin, Development, and Influence. New York: Springer-Verlag, 1982.Neumann, J. von. "Über eine Widerspruchsfreiheitsfrage in der axiomatischen Mengenlehre." J. reine angew. Math. 160, 227-241, 1929.Neumann, J. von. "Eine Axiomatisierung der Mengenlehre." J. reine angew. Math. 154, 219-240, 1925.Rubin, J. E. Set Theory for the Mathematician. New York: Holden-Day, 1967.Suppes, P. Axiomatic Set Theory. New York: Dover, 1972.Zermelo, E. "Über Grenzzahlen und Mengenbereiche." Fund. Math. 16, 29-47, 1930.

在 Wolfram|Alpha 中引用

基础公理

请引用为

Eric W. Weisstein. "基础公理。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/AxiomofFoundation.html

学科分类