主题
Search

几乎交错链环


如果一个链环的投影通过一次交叉变换可以变成交错投影,则称其为几乎交错投影。那么,几乎交错链环是指具有几乎交错投影但没有交错投影的链环。每个交错纽结都有一个几乎交错投影。几乎交错的素纽结要么是环面纽结,要么是双曲纽结。因此,没有卫星纽结是几乎交错纽结。

所有非交错的9交叉素纽结都是几乎交错的。在393个交叉数小于等于11的非交错纽结和链环中,已知除五个外,其余都是几乎交错的(其中3个有11个交叉)。剩下的五个的命运尚不清楚。(q,2)-、(4,3)-和(5,3)-环面纽结是几乎交错的(Adams 1994,第142页)。


另请参阅

交错纽结, 链环

使用 探索

参考文献

Adams, C. C. 纽结之书:纽结数学理论的初等介绍。 New York: W. H. Freeman, pp. 139-146, 1994.

在 上被引用

几乎交错链环

引用为

Weisstein, Eric W. “几乎交错链环。” 来自 --一个 Wolfram 网络资源。 https://mathworld.net.cn/AlmostAlternatingLink.html

主题分类