主题
Search

德布鲁因-纽曼常数


Xixi 函数,其定义为

 Xi(iz)=1/2(z^2-1/4)pi^(-z/2-1/4)Gamma(1/2z+1/4)zeta(z+1/2).
(1)

Xi(z/2)/8 可以被视为信号的 傅里叶变换

 Phi(t)=sum_(n=1)^infty(2pi^2n^4e^(9t)-3pin^2e^(5t))e^(-pin^2e^(4t))
(2)

对于 t in R>=0。然后将 Phi(t)e^(lambdat^2)傅里叶变换 记为 H(lambda,z)

 F_t[Phi(t)e^(lambdat^2)](z)=H(lambda,z).
(3)

黎曼猜想 等价于猜想 Lambda<=0 (Rodgers and Tao 2020)。

de Bruijn (1950) 证明了对于 lambda>=1/2H 只有 实数 零点。C. M. Newman (1976) 证明了存在一个常数 Lambda,使得 H 只有 实数 零点,当且仅当 lambda>=Lambda 时成立,并猜想 Lambda>=0。下表总结了 2020 年之前关于 Lambda 的最佳已知下界,当时 Rodgers 和 Tao (2020) 证明了 Lambda>=0

下界参考文献
-inftyNewman 1976
-50Csordas-Norfolk-Varga 1988
-5te Riele 1991
-0.385Norfolk-Ruttan-Varga 1992
-0.0991Csordas-Ruttan-Varga 1991
-4.379×10^(-6)Csordas-Smith-Varga 1994
-5.895×10^(-9)Csordas-Odlyzko-Smith-Varga 1993
-2.63×10^(-9)Odlyzko 2000
-1.15×10^(-11)Saouter-Gourdon-Demichel 2011

参见

德布鲁因常数, Xi 函数

使用 探索

参考文献

Csordas, G.; Odlyzko, A.; Smith, W.; and Varga, R. S. "A New Lehmer Pair of Zeros and a New Lower Bound for the de Bruijn-Newman Constant." Elec. Trans. Numer. Analysis 1, 104-111, 1993.Csordas, G.; Norfolk, T. S.; and Varga, R. S. "A Lower Bound for the De Bruijn-Newman Constant Lambda." Numer. Math. 52, 483-497, 1988.Csordas, G.; Ruttan, A.; and Varga, R. S. "The Laguerre Inequalities With Applications to a Problem Associated With the Riemann Hypothesis." Numer. Algorithms 1, 305-329, 1991.Csordas, G.; Smith, W.; and Varga, R. S. "Lehmer Pairs of Zeros, the de Bruijn-Newman Constant and the Riemann Hypothesis." Constr. Approx. 10, 107-129, 1994.de Bruijn, N. G. "The Roots of Trigonometric Integrals." Duke Math. J. 17, 197-226, 1950.Finch, S. R. "De Bruijn-Newman Constant." §2.3 2 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 203-205, 2003.Newman, C. M. "Fourier Transforms with only Real Zeros." Proc. Amer. Math. Soc. 61, 245-251, 1976.Norfolk, T. S.; Ruttan, A.; and Varga, R. S. "A Lower Bound for the de Bruijn-Newman Constant Lambda II." In Progress in Approximation Theory (Ed. A. A. Gonchar and E. B. Saff). New York: Springer, pp. 403-418, 1992.Odlyzko, A. M. "An Improved Bound for the De Bruijn-Newman Constant." Numer. Algorithms 25, 293-303, 2000.Rodgers, B. and Tao, T. "The De Bruijn-Newman Constant Is Non-Negative." Forum Math., Pi 8, e6, 62 pp., 2020.Saouter, Y.; Gourdon, X.; and Demichel, P. "An Improved Lower Bound for the De Bruijn-Newman Constant." Math. Comp. 80, 2281-2287, 2011.te Riele, H. J. J. "A New Lower Bound for the De Bruijn-Newman Constant." Numer. Math. 58, 661-667, 1991.

在 中被引用

德布鲁因-纽曼常数

请这样引用

Weisstein, Eric W. “德布鲁因-纽曼常数。” 来自 Web 资源。 https://mathworld.net.cn/deBruijn-NewmanConstant.html

主题分类