简单的投票过程会导致出乎意料的反直觉悖论。例如,如果三个人为三位候选人投票,给出排名 A、B、C;B、C、A;和 C、A、B。 大多数人更喜欢 A 而不是 B,B 而不是 C,但也更喜欢 C 而不是 A (Gardner 1984, p. 25)! 即使选票被送到中央投票站,也可能进行秘密投票 (Lipton and Widgerson, Honsberger 1985)。
投票悖论
参见
阿罗悖论, 选票问题, 切蛋糕, 梅定理, 配额系统, 社会选择理论使用 Wolfram|Alpha 探索
参考文献
Black, D. Theory of Committees and Elections. Cambridge, England: Cambridge University Press, 1958.Black, D. A Mathematical Approach to Proportional Representation: Duncan Black on Lewis Carroll. Boston, MA: Kluwer, 1995.Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, p. 25, 1984.Gardner, M. The Last Recreations: Hydras, Eggs, and Other Mathematical Mystifications. New York: Springer-Verlag, pp. 317-330, 1997.Honsberger, R. Mathematical Gems III. Washington, DC: Math. Assoc. Amer., pp. 157-162, 1985.Huntington, E. V. "A Paradox in the Scoring of Completing Teams." Science 88, 287-288, 1938.Lipton, R. G.; and Widgerson, A. "Multi-Party Cryptographic Protocols." Unpublished manuscript. May 1982.Niemi, R. G. and Riker, W. H. "The Choice of Voting Systems." Sci. Amer. 234, 21-27, Jun. 1976.Riker, W. H. "Voting and the Summation of Preferences." Amer. Political Sci. Rev., Dec. 1961.Saari, D. G. Math. Intell. 10, 32, 1988.Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 72-74, 1999.Trott, M. "The Mathematica Guidebooks Additional Material: EU Voting Scheme." http://www.mathematicaguidebooks.org/additions.shtml#N_1_12.请引用为
Weisstein, Eric W. "投票悖论。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/VotingParadoxes.html