主题
Search

三角函数角--Pi/12


cos(pi/(12))=1/4(sqrt(6)+sqrt(2))
(1)
cos((5pi)/(12))=1/4(sqrt(6)-sqrt(2))
(2)
cot(pi/(12))=2+sqrt(3)
(3)
cot((5pi)/(12))=2-sqrt(3)
(4)
csc(pi/(12))=sqrt(6)+sqrt(2)
(5)
csc((5pi)/(12))=sqrt(6)-sqrt(2)
(6)
sec(pi/(12))=sqrt(6)-sqrt(2)
(7)
sec((5pi)/(12))=sqrt(6)+sqrt(2)
(8)
sin(pi/(12))=1/4(sqrt(6)-sqrt(2))
(9)
sin((5pi)/(12))=1/4(sqrt(6)+sqrt(2))
(10)
tan(pi/(12))=2-sqrt(3)
(11)
tan((5pi)/(12))=2+sqrt(3).
(12)

这些可以使用以下方法推导得出

sin(pi/(12))=sin(pi/3-pi/4)
(13)
=-sin(pi/4)cos(pi/3)+sin(pi/3)cos(pi/4)
(14)
=-1/2sqrt(2)(1/2)+1/2sqrt(3)(1/2sqrt(2))
(15)
=1/4(sqrt(6)-sqrt(2)).
(16)

类似地,

cos(pi/(12))=cos(pi/3-pi/4)
(17)
=cos(pi/4)cos(pi/3)-sin(pi/3)sin(pi/4)
(18)
=1/2(1/2sqrt(2))+1/2sqrt(3)(-1/2sqrt(2))
(19)
=1/4(sqrt(6)+sqrt(2)).
(20)

另请参阅

三角函数角, 三角学, 三角函数角--Pi/3, 三角函数角--Pi/4, 三角函数角--Pi/6

使用 Wolfram|Alpha 探索

请引用为

Weisstein, Eric W. "三角函数角--Pi/12。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/TrigonometryAnglesPi12.html

主题分类