Applegate, D. L.; Bixby, R. E.; Chvátal, V.; Cook, W.; Espinoza, D. G.; Goycoolea, M.; and Helsgaun, K. "通过 85,900 个城市的最优 TSP 巡回路径的验证。" Oper. Res. Lett.37, 11-15, 2009.Beardwood, J.; Halton, J. H.; and Hammersley, J. M. "通过多个点的最短路径。" Proc. Cambridge Phil. Soc.55, 299-327, 1959.Chartrand, G. "销售员问题:哈密顿图导论。" §3.2 in Introductory Graph Theory. New York: Dover, pp. 67-76, 1985.Fejes Tóth, L. "关于一个几何定理。" Math. Zeit.46, 83-85, 1940.Few, L. "通过 个点的最短路径和最短道路。" Mathematika2, 141-144, 1955.Finch, S. R. "旅行商常数。" §8.5 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 497-503, 2003.Flood, M. "旅行商问题。" Operations Res.4, 61-75, 1956.Goddyn, L. A. "量化器和最坏情况欧几里得旅行商问题。" J. Combin. Th. Ser. B50, 65-81, 1990.Johnson, D. S.; McGeoch, L. A.; and Rothberg, E. E. "Held-Karp 旅行商界限的渐近实验分析。" In Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms. Held in San Francisco, California, January 22-24, 1995. Philadelphia, PA: ACM, pp. 341-350, 1996.Kabatyanskii, G. A. and Levenshtein, V. I. "球体和空间堆积的界限。" Problems Inform. Transm.14, 1-17, 1978.Karloff, H. J. "欧几里得旅行商巡回路径可以有多长?" SIAM J. Disc. Math.2, 91-99, 1989.Moran, S. "有界直径集合中最优 TSP 电路的长度。" J. Combin. Th. Ser. B37, 113-141, 1984.Moscato, P. "旅行商常数的分形实例。" http://www.ing.unlp.edu.ar/cetad/mos/FRACTAL_TSP_home.html.Norman, M. G. and Moscato, P. "欧几里得旅行商问题和空间填充曲线。" Chaos Solitons Fractals6, 389-397, 1995.Percus, A. G. and Martin, O. C. "欧几里得旅行商问题中的有限尺寸和维度依赖性。" Phys. Rev. Lett.76, 1188-1191, 1996.Sloane, N. J. A. "整数序列在线百科全书"中的序列 A073008, A086306, 和 A086307。Steele, J. M. and Snyder, T. L. "组合优化中一些经典问题的最坏情况增长率。" SIAM J. Comput.18, 278-287, 1989.Verblunsky, S. "通过多个点的最短路径。" Proc. Amer. Math. Soc.2, 904-913, 1951.