考虑样本标准差
![s=sqrt(1/Nsum_(i=1)^N(x_i-x^_)^2)](/images/equations/StandardDeviationDistribution/NumberedEquation1.svg) |
(1)
|
对于从具有正态分布的总体中抽取的
个样本,正态分布的总体。
的分布由下式给出
![f_N(s)=2((N/(2sigma^2))^((N-1)/2))/(Gamma(1/2(N-1)))e^(-Ns^2/(2sigma^2))s^(N-2),](/images/equations/StandardDeviationDistribution/NumberedEquation2.svg) |
(2)
|
其中
是伽玛函数,并且
![sigma^2=(Ns^2)/(N-1)](/images/equations/StandardDeviationDistribution/NumberedEquation3.svg) |
(3)
|
(Kenney and Keeping 1951, pp. 161 and 171)。 上面绘制了函数
,其中
(红色), 4 (橙色), ..., 10 (蓝色), 和 12 (紫色)。
平均值由下式给出
其中
![b(N)=sqrt(2/N)(Gamma(N/2))/(Gamma((N-1)/2))](/images/equations/StandardDeviationDistribution/NumberedEquation4.svg) |
(6)
|
(Kenney and Keeping 1951, p. 171)。 函数
在统计过程控制中被称为
(Duncan 1986, pp. 62 and 134)。 Romanovsky 证明了
![b(N)=1-3/(4N)-7/(32N^2)-9/(128N^3)+...](/images/equations/StandardDeviationDistribution/NumberedEquation5.svg) |
(7)
|
(OEIS A088801 和 A088802; Romanovsky 1925; Pearson 1935; Kenney and Keeping 1951, p. 171)。
原点矩由下式给出
![mu_r^'=(2/N)^(r/2)(Gamma((N-1+r)/2))/(Gamma((N-1)/2))sigma^r,](/images/equations/StandardDeviationDistribution/NumberedEquation6.svg) |
(8)
|
并且
的方差为
是
的无偏估计量 (Kenney and Keeping 1951, p. 171)。
另请参阅
样本方差,
样本方差分布,
标准差
使用 Wolfram|Alpha 探索
参考文献
Duncan, A. J. Quality Control and Industrial Statistics, 5th ed. New York: McGraw-Hill, 1986.Kenney, J. F. and Keeping, E. S. "The Distribution of the Standard Deviation." §7.8 in Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, pp. 170-173, 1951.Pearson, E. The Application of Statistical Methods to Industrial Standardization and Quality Control. British Standards House, 1935.Romanovsky, V. "On the Moments of the Standard Deviation and of the Correlation Coefficient in Samples from Normal." Metron 5, 3-46, 1925.Sloane, N. J. A. Sequences A088801 and A088802 in "The On-Line Encyclopedia of Integer Sequences."在 Wolfram|Alpha 中被引用
标准差分布
引用为
Weisstein, Eric W. "标准差分布。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/StandardDeviationDistribution.html
主题分类