主题
Search

空间群


二维空间群被称为墙纸群。在三维空间中,空间群是在具有平移对称元素的晶格中可能存在的对称。在 R^3 中有 230 个空间群,其中 11 个是彼此的镜像。它们在 Cotton (1990) 中按 Hermann-Mauguin 符号列出。


另请参阅

晶体学点群, Hermann-Mauguin 符号, 晶格群, 点群, 墙纸群

使用 Wolfram|Alpha 探索

参考文献

Arfken, G. "Crystallographic Point and Space Groups." Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 248-249, 1985.Bülow, R.; Neubser, J.; and Wondratschek, H. "On Crystallography in Higher Dimensions. II. Procedure of Computation in R_4." Acta Cryst. A 27, 520-523, 1971.Brown, H.; Blow, R.; Neubser, J.; Wondratschek, H.; and Zassenhaus, H. Crystallographic Groups of Four-Dimensional Space. New York: Wiley, 1978.Buerger, M. J. Elementary Crystallography. New York: Wiley, 1956.Burgbacher, F.; Laemmerzahl, C.; Macias, A. "Is There a Stable Hydrogen Atom in Higher Dimensions?" J. Math. Phys. 40, 625-634, 1999.Cotton, F. A. Chemical Applications of Group Theory, 3rd ed. New York: Wiley, pp. 250-251, 1990.Hermann, C. "Kristallographie in Räumen beliebiger Dimensionszahl. I. Die Symmetrieoperationen." Acta Cryst. 2, 139-145, 1949.Neubser, J.; Wondratschek, H.; and Bülow, R. "On Crystallography in Higher Dimensions. I. General Definitions." Acta Cryst. A 27, 517-520, 1971.Opechowski, W. Crystallographic and Metacrystallographic Groups. Amsterdam, Netherlands: North-Holland, 1986.Rabson, D. A.; Huesman, J. F.; Fisher, B. N. "Cohomology for Anyone." Found. Phys. 33, 1769-1796, 2003.Schwarzenberger, R. L. E. "Classification of Crystal Lattices." Proc. Cambridge Philos. Soc. 72, 325-349, 1972.Schwarzenberger, R. L. E. "Crystallography in Spaces of Arbitrary Dimension." Proc. Cambridge Philos. Soc. 76, 23-32, 1974.Strebel, R. "Burckhardtsche Bestimmung der Raumgruppen I." Elem. Math. 58, 141-155, 2003.Wondratschek, H.; Bülow, R.; and Neubser, J. "On Crystallography in Higher Dimensions. III. Results in R_4." Acta Cryst. A 27, 523-535, 1971.

在 Wolfram|Alpha 中被引用

空间群

引用为

Weisstein, Eric W. "空间群。" 来自 MathWorld--Wolfram 网络资源。 https://mathworld.net.cn/SpaceGroups.html

主题分类