主题
Search

西弗特曲面


SievertsSurface

一个常曲率曲面,可以用参数形式表示为

x=rcosphi
(1)
y=rsinphi
(2)
z=(ln[tan(1/2v)]+a(C+1)cosv)/(sqrt(C)),
(3)

其中

phi=-u/(sqrt(C+1))+tan^(-1)(tanusqrt(C+1))
(4)
a=2/(C+1-Csin^2vcos^2u)
(5)
r=(asqrt((C+1)(1+Csin^2u))sinv)/(sqrt(C)),
(6)

|u|<pi/20<v<pi (Reckziegel 1986)。

第一基本形式 的系数为

E=(64acos^2ucos^2v)/([4+3a-acos(2u)+2acos^2ucos^2(2v)]^2)
(7)
F=0
(8)
G=(64[(1+a)cscv+acos^2usinv]^2)/(4a[4+3a-acos(2u)+2acos^2ucos^2(2v)]^2),
(9)

第二基本形式 的系数为

e=sqrt(a/(a+1))(8acos^3usin(3v)-4cosu[8+11a+3acos(2u)])/([4+3a-acos(2u)+2acos^2ucos^2(2v)]^2)
(10)
f=0
(11)
g=sqrt((a+1)/a)([4+5a+acos(2u)-2acos^2ucos(2v)]csc(1/2v)sec(1/2v))/([4+3a-acos(2u)+2acos^2ucos^2(2v)]^2).
(12)

西弗特曲面的 高斯曲率平均曲率 由下式给出

K=1
(13)
H=1/(1+(a+1)tan^2u).
(14)

在 Wolfram|Alpha 中探索

参考文献

Fischer, G. (Ed.). Plate 87 in Mathematische Modelle aus den Sammlungen von Universitäten und Museen, Bildband. Braunschweig, Germany: Vieweg, p. 83, 1986.Gray, A. Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 499-500, 1997.Reckziegel, H. "Sievert's Surface." §3.4.4.3 in Mathematical Models from the Collections of Universities and Museums (Ed. G. Fischer). Braunschweig, Germany: Vieweg, pp. 38-39, 1986.Sievert, H. Über die Zentralflächen der Enneperschen Flachen konstanten Krümmungsmaßes. Dissertation, Tübingen, 1886.

引用为

Weisstein, Eric W. "西弗特曲面。" 来自 MathWorld-- Wolfram Web 资源。 https://mathworld.net.cn/SievertsSurface.html

主题分类