Bailey, W. N. "Saalschütz's Theorem." §2.2 in Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, p. 9, 1935.Dougall, J. "On Vandermonde's Theorem and Some More General Expansions." Proc. Edinburgh Math. Soc.25, 114-132, 1907.Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, p. 104, 1999.Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, p. 32, 1998.Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A K Peters, pp. 43 and 126, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.Saalschütz, L. "Eine Summationsformel." Z. für Math. u. Phys.35, 186-188, 1890.Saalschütz, L. "Über einen Spezialfall der hypergeometrischen Reihe dritter Ordnung." Z. für Math. u. Phys.36, 278-295 and 321-327, 1891.Shepard, W. F. "Summation of the Coefficients of Some Terminating Hypergeometric Series." Proc. London Math. Soc.10, 469-478, 1912.