主题
Search

模素数计数函数


类似于 素数计数函数 pi(x),符号 pi_(a,b)(x) 表示 素数形如 ak+b 且小于或等于 x 的数量 (Shanks 1993, pp. 21-22)。

Hardy 和 Littlewood 证明了 pi_(4,1)(n)pi_(4,3)(n) 无限次地交替领先,这个结果被称为 素数二次效应pi_(4,3)(n)-pi_(4,1)(n) 符号的偏差被称为 切比雪夫偏差

等数pi_(a,b) 值组包括 (pi_(3,1), pi_(3,2)), (pi_(4,1), pi_(4,3)), (pi_(5,1), pi_(5,2), pi_(5,3), pi_(5,4)), (pi_(6,1), pi_(6,5)), (pi_(7,1), pi_(7,2), pi_(7,3), pi_(7,4), pi_(7,5), pi_(7,6)), (pi_(8,1), pi_(8,3), pi_(8,5), pi_(8,7)), (pi_(9,1), pi_(9,2), pi_(9,4), pi_(9,5), pi_(9,7), pi_(9,8)) 等等。 对于小的 n 值,pi_(n,k) 的值在下表中给出,针对前几个十的幂 (Shanks 1993)。

npi_(3,1)(n)pi_(3,2)(n)pi_(4,1)(n)pi_(4,3)(n)
SloaneA091115A091116A091098A091099
10^11212
10^211131113
10^380878087
10^4611617609619
10^54784480747834808
10^639231392663917539322
10^7332194332384332180332398
10^82880517288093728805042880950
10^925422713254248202542349125424042
npi_(6,1)(n)pi_(6,5)(n)
SloaneA091115A091119
10^111
10^21112
10^38086
10^4611616
10^547844806
10^63923139265
10^7332194332383
10^828805172880936
10^92542271325424819
npi_(7,1)(n)pi_(7,2)(n)pi_(7,3)(n)pi_(7,4)(n)pi_(7,5)(n)pi_(7,6)(n)
SloaneA091120A091121A091122A091123A091124A091125
10^1011010
10^2345354
10^3282730262927
10^4203203209202211200
10^5159315841613160116041596
10^6130631306513105130691310513090
10^7110653110771110815110776110787110776
10^8960023960114960213960085960379960640
10^9847422184747968475123847402184746308474742
npi_(8,1)(n)pi_(8,3)(n)pi_(8,5)(n)pi_(8,7)(n)
SloaneA091126A091127A091128A091129
10^10111
10^25766
10^337444343
10^4295311314308
10^52384240923992399
10^619552196531962319669
10^7165976166161166204166237
10^81439970144054414405341440406
10^912711220127123401271227112711702

请注意,由于 pi_(8,1)(n)pi_(8,3)(n)pi_(8,5)(n)pi_(8,7)(n)等数

pi_(4,1)(n)=pi_(8,1)(n)+pi_(8,5)(n)
(1)
pi_(4,3)(n)=pi_(8,3)(n)+pi_(8,7)(n)
(2)

也是等数。

Erdős 证明了对于所有 n>6,在 n2n 之间至少存在一个 素数 形如 4k+1,以及至少一个 素数 形如 4k+3


另请参阅

切比雪夫偏差, 狄利克雷定理, 素数计数函数, 素数二次效应

使用 Wolfram|Alpha 探索

参考文献

Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, p. 96, 2004.Granville, A. 和 Martin, G. "Prime Number Races." Aug. 24, 2004. http://www.arxiv.org/abs/math.NT/0408319.Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, 1993.Sloane, N. J. A. 序列 A073505, A073506, A073508, A091098 A091099, A091115, A091116, A091117, A091119, A091120, A091121, A091122, A091123, A091124, 和 A091125 in "整数序列在线百科全书"。

在 Wolfram|Alpha 上被引用

模素数计数函数

请引用为

Weisstein, Eric W. "模素数计数函数。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/ModularPrimeCountingFunction.html

主题分类