主题
Search

幻方超立方体


幻方超立方体是二维幻方和三维幻立方的四维推广。幻方超立方体具有幻和

 M_4(n)=1/2n(n^4+1),

因此,对于 n=1, 2, ...,幻方超立方体常数为 1, 17, 123, 514, 1565, 3891, ... (OEIS A021003)。

MagicTesseract

Berlekamp等人(1982,第 783 页)给出了一个幻方超立方体。J. Hendricks 构建了三阶、四阶、五阶的幻方超立方体(Hendricks 1999a,第 128-129 页)和六阶的幻方超立方体(Heinz)。M. Houlton 使用了 Hendricks 的技术构建了五阶、七阶和九阶的幻方超立方体。

模旋转和反射,存在 58 个不同的三阶幻方超立方体(Heinz,Hendricks 1999),上面展示了其中一个。27 行(例如,1-72-50)、列(例如,1-80-42)、柱(例如,1-54-68)和文件(例如,1-78-44)的和均为幻和 123。

Hendricks(1968)构建了一个四阶的泛-4-对角幻方超立方体。目前尚不清楚是否存在五阶的泛-4-对角幻方超立方体,Andrews(1960)和 Schroeppel(1972)指出,这种超立方体不可能存在。

最小的完美幻方超立方体是 16 阶的,具有幻和 524296,由 Hendricks 构建(Peterson 1999)。

已知对于 n 维幻方超立方体,存在 3 阶的 n=5、6、7 和 8 阶(Hendricks)。Hendricks 还构建了一个完美的 16 阶幻方超立方体(其中完美意味着所有超平面都是完美的)。

2003 年,Christian Boyer 构建了第一个双幻方和三幻方超立方体。


另请参阅

幻立方, 幻方, 超立方体

使用 Wolfram|Alpha 探索

参考文献

Adler, A. "Magic N-Cubes Form a Free Monoid." Electronic J. Combinatorics 4, No. 1, R15, 1-3, 1997. http://www.combinatorics.org/Volume_4/Abstracts/v4i1r15.html.Andrews, W. S. Magic Squares and Cubes, 2nd rev. ed. New York: Dover, 1960.Berlekamp, E. R.; Conway, J. H; and Guy, R. K. Winning Ways for Your Mathematical Plays, Vol. 2: Games in Particular. London: Academic Press, 1982.Boyer, C. "Multimagic Hypercubes." http://www.multimagie.com/English/Hypercubes.htm.Heinz, H. "The Tesseract." http://members.shaw.ca/tesseracts/.Heinz, H. "History of the Magic Tesseract (Indeed Magic Hypercubes, as Well)." http://members.shaw.ca/johnhendricksmath/tesseracts.htm.Heinz, H. "John Hendricks." http://www.magic-squares.net/hendricks.htm.Hendricks, J. R. "The Five and Six Dimensional Magic Hypercubes of Order 3." Canad. Math. Bull. 5, 171-189, 1952.Hendricks, J. R. "A Pan-4-agonal Magic Tesseract." Amer. Math. Monthly 75, 384, 1968.Hendricks, J. R. "Magic Tesseracts and N-Dimensional Magic Hypercubes." J. Recr. Math. 6, 193-201, 1973.Hendricks, J. R. Erratum to 'Magic Tesseracts and N-Dimensional Magic Hypercubes." J. Recr. Math. 7, 80, 1974.Hendricks, J. R. "Ten Magic Tesseracts of Order Three." J. Recr. Math. 18, 125-134, 1985-1986.Hendricks, J. R. Magic Squares to Tesseracts by Computer. Published by the author, 1999a.Hendricks, J. R. All Third Order Magic Tesseracts. Published by the author, 1999b.Hendricks, J. R. Perfect n-Dimensional Hypercubes of Order 2^n. Published by the author, 1999c.Peterson, I. "Ivar Peterson's MathTrek: Magic Tesseracts." http://www.maa.org/mathland/mathtrek_10_18_99.html.Schroeppel, R. Item 51 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 18, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/number.html#item51.Sloane, N. J. A. Sequence A021003 in "The On-Line Encyclopedia of Integer Sequences."Trenkler, M. "Magic p-Dimensional Cubes of Order n≢2 (mod 4)." Acta Arith. 92, 189-204, 2000.Trenkler, M. "A Construction of Magic Cubes." Math. Gaz. 84, 36-41, 2000.Trenkler, M. "Magic p-Dimensional Cubes." Submitted to Acta Arith., 2000.

在 Wolfram|Alpha 上引用

幻方超立方体

请引用为

Weisstein, Eric W. “幻方超立方体。” 来自 MathWorld——Wolfram Web 资源。 https://mathworld.net.cn/MagicTesseract.html

学科分类