主题
Search

格同态


L=<L, v , ^ >K=<K, v , ^ >,且设 h:L->K。则 h 是格同态当且仅当对于任何 a,b in Lh(a v b)=h(a) v h(b)h(a ^ b)=h(a) ^ h(b)。因此,格同态是一种特殊的结构同态。换句话说,映射 h 是格同态,当且仅当它既是并同态又是交同态

如果 h 是单射格同态,则它是格嵌入,并且如果格嵌入是满射,则它是格同构

泛代数中,一个重要的格同构的例子是由对应定理保证的同构,该定理指出,如果 A 是一个代数,并且 thetaA 上的同余关系,则映射 h:[theta,del _A]->Con(A/theta) 由公式定义

 h(phi)=phi/theta={([a]_theta,[b]_theta) in (A/theta)^2|(a,b) in phi}

是一个格同构


参见

, 格嵌入, 格同构, 结构同态

此条目由 Matt Insall 贡献 (作者链接)

使用 Wolfram|Alpha 探索

参考文献

Bandelt, H. H. "Tolerance Relations on Lattices." Bull. Austral. Math. Soc. 23, 367-381, 1981.Birkhoff, G. Lattice Theory, 3rd ed. Providence, RI: Amer. Math. Soc., 1967.Burris, S. and Sankappanavar, H. P. A Course in Universal Algebra. New York: Springer-Verlag, 1981. http://www.thoralf.uwaterloo.ca/htdocs/ualg.html.Chajda, I. and Zelinka, B. "Tolerances and Convexity." Czech. Math. J. 29, 584-587, 1979.Chajda, I. and Zelinka, B. "A Characterization of Tolerance-Distributive Tree Semilattices." Czech. Math. J. 37, 175-180, 1987.Gehrke, M.; Kaiser, K.; and Insall, M. "Some Nonstandard Methods Applied to Distributive Lattices." Zeitschrifte für Mathematische Logik und Grundlagen der Mathematik 36, 123-131, 1990.Grätzer, G. Lattice Theory: First Concepts and Distributive Lattices. San Francisco, CA: W. H. Freeman, 1971.Grätzer, G. Universal Algebra, 2nd ed. New York: Springer-Verlag, 1979.Grätzer, G. General Lattice Theory, 2nd ed. Boston, MA: Birkhäuser, 1998.Hobby, D. and McKenzie, R. The Structure of Finite Algebras. Providence, RI: Amer. Math. Soc., 1988.Insall, E. "Nonstandard Methods and Finiteness Conditions in Algebra." Ph.D. dissertation. Houston, TX: University of Houston, 1989.Insall, M. "Some Finiteness Conditions in Lattices Using Nonstandard Proof Methods." J. Austral. Math. Soc. 53, 266-280, 1992.Insall, M. "Geometric Conditions for Local Finiteness of a Lattice of Convex Sets." Math. Moravica 1, 35-40, 1997.Schweigert, D. "Central Relations on Lattices." J. Austral. Math. Soc. 37, 213-219, 1988.Schweigert, D. and Szymanska, M. "On Central Relations of Complete Lattices." Czech. Math. J. 37, 70-74, 1987.

在 Wolfram|Alpha 上被引用

格同态

请引用为

Insall, Matt. "格同态。" 来自 MathWorld--Wolfram Web 资源,由 Eric W. Weisstein 创建。 https://mathworld.net.cn/LatticeHomomorphism.html

主题分类