主题
Search

Meet-同态


L=(L, ^ , v )K=(K, ^ , v ) 为格,且设 h:L->K。则映射 h 是 meet-同态,如果 h(x ^ y)=h(x) ^ h(y)。也称“h 保持 meet 运算。”


此条目由 Matt Insall (作者链接) 贡献

使用 Wolfram|Alpha 探索

参考文献

Bandelt, H. H. "Tolerance Relations on Lattices." Bull. Austral. Math. Soc. 23, 367-381, 1981.Birkhoff, G. Lattice Theory, 3rd ed. Providence, RI: Amer. Math. Soc., 1967.Chajda, I. and Zelinka, B. "Tolerances and Convexity." Czech. Math. J. 29, 584-587, 1979.Chajda, I. and Zelinka, B. "A Characterization of Tolerance-Distributive Tree Semilattices." Czech. Math. J. 37, 175-180, 1987.Grätzer, G. General Lattice Theory, 2nd ed. Boston, MA: Birkhäuser, 1998.Hobby, D. and McKenzie, R. The Structure of Finite Algebras. Providence, RI: Amer. Math. Soc., 1988.Insall, M. "Some Finiteness Conditions in Lattices Using Nonstandard Proof Methods." J. Austral. Math. Soc. 53, 266-280, 1992.Schweigert, D. "Central Relations on Lattices." J. Austral. Math. Soc. 37, 213-219, 1988.Schweigert, D. and Szymanska, M. "On Central Relations of Complete Lattices." Czech. Math. J. 37, 70-74, 1987.

在 Wolfram|Alpha 中被引用

Meet-同态

请按如下方式引用

Insall, Matt. "Meet-Homomorphism." 来自 MathWorld—— Wolfram Web 资源,由 Eric W. Weisstein 创建。 https://mathworld.net.cn/Meet-Homomorphism.html

学科分类