Bertrand, J. 微分与积分学教程, tome I. Paris: Gauthier-Villars, p. 138, 1864.Cesàro, E. "函数的函数的导数." Nouvelles Ann.4, 41-45, 1885. Reprinted in Opere Scelte, Vol. 1. Rome: Edizioni Cremorese, pp. 416-429, 1964.Comtet, L. 高级组合数学:有限与无限展开的艺术,修订增补版 Dordrecht, Netherlands: Reidel, pp. 137-139, 1974.Dederick. "几个函数的函数的逐次导数." Ann. Math.27, 385-394, 1926.Faà di Bruno, C. F.. "关于函数展开." Ann. di Scienze Matem. et Fisiche di Tortoloni6, 479-480, 1855.Faà di Bruno, C. F.. "关于微分计算新公式的注释." Quart. J. Math.1, 359-360, 1857.Figueroa, H. and Gracia-Bondía, J. M. "量子场论中的组合霍普夫代数 I." 19 Mar 2005. http://arxiv.org/abs/hep-th/0408145.Français, J. F. "超越分析。关于导数计算,追溯到其真正原理,或函数展开理论,以及序列的返回." Ann. Math.6, 61-111, 1815.Johnson, W. P. "法布鲁诺公式的奇特历史." Amer. Math. Monthly109, 217-234, 2002.Joni, S. A. and Rota, C.-G. "法布鲁诺双代数." §IX in "Coalgebras and Bialgebras in Combinatorics." Umbral Calculus and Hopf Algebras.Contemp. Math.6, 18-21, 1982.Jordan, C. 有限差分法,第三版 New York: Chelsea, p. 33, 1965.Knuth, D. E. 计算机程序设计艺术,第 1 卷:基本算法,第三版 Reading, MA: Addison-Wesley, p. 50, 1997.Marchand, E. "关于变量的改变." Ann. École Normale Sup.3, 137-188 and 343-388, 1886.Riordan, J. 组合分析导论 New York: Wiley, pp. 35-37, 1958.Roman, S. "法布鲁诺公式." Amer. Math. Monthly87, 805-809, 1980.Teixeira, F. G. "关于任意阶导数." Giornale di Matem. di Battaglini18, 306-316, 1880.Wall. "关于 阶导数 ." Bull. Amer. Math. Soc.44, 395-398, 1938.