主题
Search


在物理学中,“熵”一词具有重要的物理意义,表示系统的“无序”程度。在数学中,使用更抽象的定义。变量 X 的(香农)熵定义为

 H(X)=-sum_(x)P(x)log_2[P(x)]

比特,其中 P(x) 是 X 处于状态 x 的概率,并且如果 P=0,则 Plog_2P 定义为 0。变量 X_1, ..., X_n 的联合熵则定义为

 H(X_1,...,X_n)=-sum_(x_1)...sum_(x_n)P(x_1,...,x_n)log_2[P(x_1,...,x_n)].

另请参阅

微分熵, 信息论, 柯尔莫哥洛夫熵, 最大熵方法, 度量熵, 互信息, 纳特, 奥恩斯坦定理, 冗余, 相对熵, 拓扑熵

使用 Wolfram|Alpha 探索

参考文献

Ellis, R. S. Entropy, Large Deviations, and Statistical Mechanics. New York: Springer-Verlag, 1985.Havil, J. "A Measure of Uncertainty." §14.1 in Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 139-145, 2003.Khinchin, A. I. Mathematical Foundations of Information Theory. New York: Dover, 1957.Lasota, A. and Mackey, M. C. Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, 2nd ed. New York: Springer-Verlag, 1994.Ott, E. "Entropies." §4.5 in Chaos in Dynamical Systems. New York: Cambridge University Press, pp. 138-144, 1993.Rothstein, J. "Information, Measurement, and Quantum Mechanics." Science 114, 171-175, 1951.Schnakenberg, J. "Network Theory of Microscopic and Macroscopic Behavior of Master Equation Systems." Rev. Mod. Phys. 48, 571-585, 1976.Shannon, C. E. "A Mathematical Theory of Communication." The Bell System Technical J. 27, 379-423 and 623-656, July and Oct. 1948. http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf.Shannon, C. E. and Weaver, W. Mathematical Theory of Communication. Urbana, IL: University of Illinois Press, 1963.

在 Wolfram|Alpha 中被引用

请引用为

Eric W. Weisstein "熵。" 来自 MathWorld——Wolfram Web 资源。 https://mathworld.net.cn/Entropy.html

学科分类