一个集合是可数的当且仅当它与有限序数等势。(Moore 1982, p. 6; Rubin 1967, p. 107; Suppes 1972, pp. 151-152)。然而,Ciesielski (1997, p. 64) 称此性质为“可数的”。集合 aleph0 最常被称为“可数集”到“可数无限”。
可数集
另请参阅
可数集, 可数无限使用 Wolfram|Alpha 探索
参考文献
Ciesielski, K. Set Theory for the Working Mathematician. Cambridge, England: Cambridge University Press, 1997.Dauben, J. W. Georg Cantor: His Mathematics and Philosophy of the Infinite. Princeton, NJ: Princeton University Press, 1990.Ferreirós, J. "Non-Denumerability of ." §6.2 in Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics. Basel, Switzerland: Birkhäuser, pp. 177-183, 1999.Moore, G. H. Zermelo's Axiom of Choice: Its Origin, Development, and Influence. New York: Springer-Verlag, 1982.Rubin, J. E. Set Theory for the Mathematician. New York: Holden-Day, 1967.Suppes, P. Axiomatic Set Theory. New York: Dover, 1972.在 Wolfram|Alpha 中被引用
可数集请引用为
Weisstein, Eric W. “可数集。” 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/DenumerableSet.html