Aldred, R. E. L.; Bau, S.; Holton, D. A.; and McKay, B. D. "Nonhamiltonian 3-Connected Cubic Planar Graphs." SIAM J. Disc. Math.13, 25-32, 2000.Grünbaum, B. Convex Polytopes, 2nd ed. New York: Springer-Verlag, 2003.Holton, D. A. and McKay, B. D. "The Smallest Non-Hamiltonian 3-Connected Cubic Planar Graphs Have 38 Vertices." J. Combin. Th. SeR. B45, 305-319, 1988.Hunter, H. F. On Non-Hamiltonian Maps and their Duals. Ph. D. thesis. Troy, NY: Rensselaer Polytechnic Institute, 1962.Knorr, P. Aufspannende Kreise und Wege in polytopalen Graphen. PhD thesis. Dortmund, Germany: Universität Dortmund, 2010.Sloane, N. J. A. Sequence A164919, in "The On-Line Encyclopedia of Integer Sequences."van Cleemput, N. and Zamfirescu, C. T. "Regular Non-Hamiltonian Polyhedral Graphs." Appl. Math. Comput.338 192-206, 2018.Walther, H. "Ein kubischer, planarer, zyklisch fünffach zusammenhängender Graf, der keinen Hamiltonkreis besizt." Wiss. Z. Hochschule Elektrotech. Ilmenau11, 163-166, 1965.Zamfirescu, T. "Three Small Cubic Graphs with Interesting Hamiltonian Properties." J. Graph Th.4, 287-292, 1980.