主题
Search

双三次非哈密顿图


双三次非哈密顿图是一个双三次(即,二分 三次图),它是非哈密顿的(即,不具备哈密顿环)。

HortonGraph

Tutte (1971) 猜想所有 3-连通 双三次图 都是 哈密顿图,这一论断被称为 Tutte 猜想Horton 图,包含 96 个节点,如上图所示,提供了第一个反例 (Bondy and Murty 1976, p. 240)。

NonhamiltonianBicubicGraphs

Horton (1982) 随后找到了一个包含 92 个节点的反例,Ellingham (1981, 1982b) 和 Owens (1983) 发现了两个更小的(非同构)包含 78 个节点的反例。Ellingham 和 Horton (1983) 随后发现了一个包含 54 个节点和 81 条边的反例图。目前已知的最小反例是 50 节点的 Georges 图 (Georges 1989; Grünbaum 2006, 2009)。

这些已知的小反例总结在下表中,并在上面进行了说明。

V名称参考文献
50Georges 图Georges (1989), Grünbaum (2006, 2009)
5454-Ellingham-Horton 图Ellingham and Horton (1983)
7878-Ellingham-Horton 图Ellingham (1981, 1982)
7878-Owens 图Owens (1983)
9292-Horton 图Horton (1982)
9696-Horton 图Bondy and Murty (1976)

另请参阅

双三次图, 三次非哈密顿图, Ellingham-Horton 图, Georges 图, Horton 图, 非哈密顿图, Owens 图, Tutte 猜想

使用 Wolfram|Alpha 探索

参考文献

Bondy, J. A. 和 Murty, U. S. R. Graph Theory with Applications. New York: North Holland, pp. 61 和 240, 1976.Bondy, J. A. 和 Murty, U. S. R. Graph Theory. Berlin: Springer-Verlag, pp. 487-488, 2008.Ellingham, M. N. "Non-Hamiltonian 3-Connected Cubic Partite Graphs." Research Report No. 28, Dept. of Math., Univ. Melbourne, Melbourne, 1981.Ellingham, M. N. Cycles in 3-Connected Cubics Graphs. M.Sc. thesis. Melbourne, Australia: University of Melbourne, June 1982a.Ellingham, M. N. "Constructing Certain Cubic Graphs." In Combinatorial Mathematics, IX: Proceedings of the Ninth Australian Conference held at the University of Queensland, Brisbane, August 24-28, 1981 (Ed. E. J. Billington, S. Oates-Williams, and A. P. Street). Berlin: Springer-Verlag, pp. 252-274, 1982b.Ellingham, M. N. 和 Horton, J. D. "Non-Hamiltonian 3-Connected Cubic Bipartite Graphs." J. Combin. Th. Ser. B 34, 350-353, 1983.Georges, J. P. "Non-Hamiltonian Bicubic Graphs." J. Combin. Th. B 46, 121-124, 1989.Gropp, H. "Configurations and the Tutte Conjecture." Ars. Combin. A 29, 171-177, 1990.Grünbaum, B. "3-Connected Configurations (n_3) with No Hamiltonian Circuit." Bull. Inst. Combin. Appl. 46, 15-26, 2006.Grünbaum, B. Configurations of Points and Lines. Providence, RI: Amer. Math. Soc., p. 311, 2009.Horton, J. D. "On Two-Factors of Bipartite Regular Graphs." Discr. Math. 41, 35-41, 1982.Owens, P. J. "Bipartite Cubic Graphs and a Shortness Exponent." Disc. Math. 44, 327-330, 1983.Tutte, W. T. "On the 2-Factors of Bicubic Graphs." Discr. Math. 1, 203-208, 1971.

请引用为

Weisstein, Eric W. “双三次非哈密顿图。” 来自 MathWorld——Wolfram Web Resource。https://mathworld.net.cn/BicubicNonhamiltonianGraph.html

主题分类