小波是一类函数,用于在空间和尺度上定位给定函数。一族小波可以从一个函数 构建,有时称为“母小波”,它被限制在有限区间内。然后通过平移 () 和伸缩 () 形成“子小波” 。小波特别适用于压缩图像数据,因为小波变换在某些方面优于传统的傅里叶变换。
一个单独的小波可以定义为
|
(1)
|
那么
|
(2)
|
且 Calderón 公式给出
|
(3)
|
一种常见的小波类型是使用 Haar 函数定义的。
电视剧犯罪剧集 数字追凶 第一季剧集 “Counterfeit Reality” (2005) 以小波为特色。
另请参阅
傅里叶变换,
Haar 函数,
Lemarié 小波,
小波变换
使用 Wolfram|Alpha 探索
参考文献
Benedetto, J. J. and Frazier, M. (Eds.). Wavelets: Mathematics and Applications. Boca Raton, FL: CRC Press, 1994.Chui, C. K. An Introduction to Wavelets. San Diego, CA: Academic Press, 1992.Chui, C. K. (Ed.). Wavelets: A Tutorial in Theory and Applications. San Diego, CA: Academic Press, 1992.Chui, C. K.; Montefusco, L.; and Puccio, L. (Eds.). Wavelets: Theory, Algorithms, and Applications. San Diego, CA: Academic Press, 1994.Daubechies, I. Ten Lectures on Wavelets. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1992.Erlebacher, G. H.; Hussaini, M. Y.; and Jameson, L. M. (Eds.). Wavelets: Theory and Applications. New York: Oxford University Press, 1996.Foufoula-Georgiou, E. and Kumar, P. (Eds.). Wavelets in Geophysics. San Diego, CA: Academic Press, 1994.Hernández, E. and Weiss, G. A First Course on Wavelets. Boca Raton, FL: CRC Press, 1996.Hubbard, B. B. The World According to Wavelets: The Story of a Mathematical Technique in the Making, 2nd rev. upd. ed. New York: A K Peters, 1998.Jawerth, B. and Sweldens, W. "An Overview of Wavelet Based Multiresolution Analysis." SIAM Rev. 36, 377-412, 1994.Kaiser, G. A Friendly Guide to Wavelets. Cambridge, MA: Birkhäuser, 1994.Massopust, P. R. Fractal Functions, Fractal Surfaces, and Wavelets. San Diego, CA: Academic Press, 1994.Meyer, Y. Wavelets: Algorithms and Applications. Philadelphia, PA: SIAM Press, 1993.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Wavelet Transforms." §13.10 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 584-599, 1992.Resnikoff, H. L. and Wells, R. O. J. Wavelet Analysis: The Scalable Structure of Information. New York: Springer-Verlag, 1998.Schumaker, L. L. and Webb, G. (Eds.). Recent Advances in Wavelet Analysis. San Diego, CA: Academic Press, 1993.Stollnitz, E. J.; DeRose, T. D.; and Salesin, D. H. "Wavelets for Computer Graphics: A Primer, Part 1." IEEE Computer Graphics and Appl. 15, No. 3, 76-84, 1995.Stollnitz, E. J.; DeRose, T. D.; and Salesin, D. H. "Wavelets for Computer Graphics: A Primer, Part 2." IEEE Computer Graphics and Appl. 15, No. 4, 75-85, 1995.Strang, G. "Wavelets and Dilation Equations: A Brief Introduction." SIAM Rev. 31, 614-627, 1989.Strang, G. "Wavelets." Amer. Sci. 82, 250-255, 1994.Taswell, C. Handbook of Wavelet Transform Algorithms. Boston, MA: Birkhäuser, 1996.Teolis, A. Computational Signal Processing with Wavelets. Boston, MA: Birkhäuser, 1997.Vidakovic, B. Statistical Modeling by Wavelets. New York: Wiley, 1999.Walker, J. S. A Primer on Wavelets and their Scientific Applications. Boca Raton, FL: CRC Press, 1999.Walter, G. G. Wavelets and Other Orthogonal Systems with Applications. Boca Raton, FL: CRC Press, 1994.Weisstein, E. W. "Books about Wavelets." http://www.ericweisstein.com/encyclopedias/books/Wavelets.html.Wickerhauser, M. V. Adapted Wavelet Analysis from Theory to Software. Wellesley, MA: Peters, 1994.在 Wolfram|Alpha 中被引用
小波
请引用为
韦斯坦因,埃里克·W. "小波。" 来自 MathWorld--Wolfram Web 资源。 https://mathworld.net.cn/Wavelet.html
主题分类